
Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

C#: Persistence

2
Java and C# in depth

Outline

§  C# Serialization

§  Connecting to a RDBMS with ADO.NET

§  LINQ (Language Integrated Queries)

§  NoSQL Solutions for C# and Java

3
Java and C# in depth

C# Serialization

4
Java and C# in depth

.NET serialization

Binary serialization

§  To a stream; disk; memory; network
§  Mark the class with the Serializable attribute
§  Mark the fields you don’t want to serialize with the
NonSerialized attribute

XML serialization

§  Serializes only public fields and properties
§  Used e.g. for Web Services (Data Contracts, describing

the data to be exchanged)

5
Java and C# in depth

Binary serialization restrictions

Differently from Java, the Serializable attribute only
applies to one class.

If we want descendant and supplier classes to be serializable,

we have to mark them as Serializable as well

As in Java, constructors are not invoked at deserialization time,
so inconsistent objects may be accepted into the system

As in Java, the class private attributes are part of the class
default serialized form (API)

6
Java and C# in depth

.NET binary serialization example

[Serializable]
class ClassA
{

public int Field1 {set; get;}
public ClassB Field2 {set; get;}
[NonSerialized]
private string field3;
...
}

7
Java and C# in depth

Sample serialization

class ClientClass
{ //suppose we pass an object of type ClassA

public void serialize(Object target) {
//exception handling omitted
 IFormatter frmt = new BinaryFormatter();
 Stream str= new FileStream(“fileName”,
 FileMode.Create, FileAccess.Write,
 FileShare.None);
 frmt.Serialize(str, target);
 str.Close();
}

}

8
Java and C# in depth

Sample deserialization

class ClientClass
{//exception handling omitted

public Object deserialize() {
 IFormatter frmt = new BinaryFormatter();
 Stream str= new FileStream(“fileName”,
 FileMode.Open, FileAccess.Read,
 FileShare.Read);
 Object o = frmt.Deserialize(str);
 str.close();
 return o;
}}

9
Java and C# in depth

Providing a custom serialized form 1

1.  Implement ISerializable

2.  Implement callback, to be used at serialization time
public virtual void
GetObjectData(SerializationInfo inf,

 StreamingContext sc)
{
 inf.addValue(“key1”,Field1);
 inf.addValue(“key2”,Field2);
}

10
Java and C# in depth

Providing a custom serialized form 2

3.  Provide a specific constructor intended for deserialization

protected ClassA(SerializationInfo inf,
StreamingContext sc){

 Field1 = inf.GetInt32(“key1”);
 Field2 = (ClassB)inf.GetValue
 (“key2”, typeof(ClassB));
 }

11
Java and C# in depth

Serialization and Security

§  Serialization allows access to private fields
§  To protect the GetObjectData method you should use the
SecurityPermissionAttribute with two flags:

[SecurityPermissionAttribute(
 SecurityAction.Demand,
 SerializationFormatter=true)]

 public virtual void
GetObjectData(SerializationInfo inf,

 StreamingContext sc)
{ ...}
§  Default: local machine can access private fields, intranet or

internet-downloaded code cannot
§  Hint: don’t serialize sensitive information

12
Java and C# in depth

Providing a custom serialized form 3

§  Objects are reconstructed from the inside-out:
deserialization order of complex object structures matters.

§  Implement IDeserializationCallback to do

something after the standard (non-XML) deserialization
process happened

§  method OnDeserialization (Object sender) will be
called after deserialization

§  The functionality for sender (the object that initiated the

callback) is not currently implemented

13
Java and C# in depth

Deserialization and Schema Evolution 1

§  Version Tolerant Serialization (VTS) is a set of features
enabled for Serializable classes

§  An added attribute in a new version does not cause an

exception anymore (is this really an improvement?)

§  A field can be marked with the [OptionalField]attribute

so that it does not trigger an exception if not present when
deserializing

OnSerializing, OnSerialized, OnDeserializing,
OnDeserialized attributes are also available to tag
methods doing something before and after (de)serialization

14
Java and C# in depth

Deserialization and Schema Evolution 2

Among others, Microsoft suggests as “best practices”:

§  Never remove a serialized field

§  Never change the name or type of a serialized field

§  When adding a new field, apply the [OptionalField]
attribute

Basically, try to evolve your classes as little as possible

15
Java and C# in depth

Connecting
to a RDBMS

with ADO.NET

16
Java and C# in depth

ADO.NET!

§  Library to interact with data sources (databases, text
files, Excel spreadsheets, XML files)

§  We are now focusing on relational databases

§  There are different Data Providers (API data provider
names (DPN) listed)
§ Odbc
§ OleDb (Excel, Access)
§ Oracle
§ Sql (Microsoft SQL Server)
§ Bdp (generic access)

17
Java and C# in depth

ADO.NET Objects!

§  DPNConnection (i.e. OdbcConnection,
OleDbConnection, SqlConnection,…)

§  DPNCommand (send SQL statements to db)

§  DPNDataReader (result of a query as a read-only
sequential stream)

§  DataSet (in-memory representation of relational data)

§  DPNDataAdapter (defined for each table in a DataSet,
can work offline, load and persist in single batches)

18
Java and C# in depth

Handling a connection

SqlConnection con = new SqlConnection
(“Data Source=myServerAddress;
 Initial Catalog=myDBName;
 User ID=anID;
 Password=aPassword”);

con.Open()

§  Here a connection is established, if possible

19
Java and C# in depth

ADO.NET connection pooling

SQL Server can create many connection pools

§  One per distinct connection string
§  One per Windows Identity (if integrated security is used)
§  One per process
§  One per application domain

20
Java and C# in depth

Database operations

A DPNCommand object encapsulates a db operation

SqlCommand cmd = new SQLCommand(queryString,
con)

For query results use DPNDataReader

SqlDataReader rdr = cmd.ExecuteReader();

For inserts, updates and deletes create first a DPNCommand

passing an SQL string, and then use

cmd.ExecuteNonQuery();

21
Java and C# in depth

Handling query result sets

The DPNDataReader object iterates through the result

§ Method Read()moves the cursor to the next row,
returning false when there are no more rows

§  Can use a string indexer to retrieve column values
string name=(string)rdr[“Person_Name”]

§  Can also use getters methods to get column values of the

type specified in the getter name (e.g. GetDateTime)

22
Java and C# in depth

Cleaning up

Always remember to close the connection in a finally block,
even if you are using some connection pool facilities
… 	
finally{
// If you have read data
if (rdr!=null) {
rdr.Close();}
// Very important!!!
if (con!=null) {
con.Close();} } ...	

23
Java and C# in depth

Prepared statements

Encapsulated, pre-compiled queries
§  More readable, more portable
§  Favor query optimization

SqlCommand cmd = new SqlCommand (“select *
from Courses where year = @Year”, con);

SqlParameter param = new SqlParameter();
param.ParameterName = “@Year”;

param.Value = courseYear;
cmd.Parameters.add(param);
rdr = cmd.executeReader();

24
Java and C# in depth

Spring.NET

Spring.NET supports ADO.NET enterprise applications

§  Connection strings and parameter management

§  Provider-independent exceptions, mapped to db-specific
errors

§  Classes like AdoTemplate to handle the core workflow

§  Developers only need to implement callback interfaces to
handle the mapping

25
Java and C# in depth

LINQ

 (Language Integrated Queries)

26
Java and C# in depth

Object-relational impedance mismatch

§  Object oriented applications and relational databases
implement different mathematical models

§  A mapping layer is therefore necessary to represent
objects as tables and vice versa

§  Mapping objects to tables may be difficult and error
prone

§  From here stems the idea of ORM’s and data mappers

27
Java and C# in depth

Language Integrated Queries (LINQ)

Access data from different sources in a unified manner

Express data access logic in C#, enabling execution in a

completely different environment

Reduce the impedance mismatch between data models, e.g.

§  LINQ to objects
§  LINQ to SQL
§  LINQ to XML

28
Java and C# in depth

Sequences

An unbounded data structure providing one element at the time

§  DataReader (sequence of rows from a db)
§  Stream (sequence of bytes)
§  TextReader (sequence of characters)

IEnumerable<T> interface models sequences

Useful to think of query expressions as sequences

29
Java and C# in depth

LINQ to objects: a sample query

IEnumerable<string> customerNames =
from customer in customers //step 1: source
where customer.Data > 200000 //step 2: filter
select customer.name; // step 3: projection

It starts with the empty sequence and then transforms it into

other sequences according to the following steps obtaining:
1.  A sequence containing all customers in customers
2.  A sequence containing customers satisfying 1. having

the value of field Data > 200000
3.  A sequence satisfying 1. and 2. containing the

customer’s names

30
Java and C# in depth

Query result!

Id Name Country Data

123 Reto Switzerland 100000

132 Cecilia Italy 300000
213 Hauke Germany 200000

231 Nadia Russia 400000
312 Yu China 500000

321 Viswanathan India 600000

31
Java and C# in depth

Query basic structure

from rangeVariable dataSource
where filter-expression
select projection-expression;

rangeVariable is an identifier with an optional type name:

used to refer to data consistently within the query
dataSource is a source of a sequence of data
filter-expression there can be many where in

conjunction
projection-expression

32
Java and C# in depth

Ordering data

from rangeVariable dataSource
where filter-expression
orderby ordering-expression orderingKind
select projection-expression;

orderingKind can be descending or omitted (ascending)

There can be multiple pairs ordering-expression –
orderingKind, separated by comma. Each one is
interpreted in relation to the previous (e.g.: order by
ascending id and, within each id, by descending age)

33
Java and C# in depth

LINQ to SQL

Queries are consistent with LINQ to Objects

The compiler helps validating the queries

Only supports SQLServer

A good ORM solution (but always check the generated SQL!)

34
Java and C# in depth

NoSQL Solutions for C# and Java

35
Java and C# in depth

http://geekandpoke.typepad.com/geekandpoke/2011/01/nosql.html

36
Java and C# in depth

What’s wrong with Relational DBs?

§  Established solution

§  Great with read-heavy web sites

§  Scale horizontally by adding web servers

§  Scale vertically by adding cores/CPUs/RAM to support
higher DB traffic on the (only) DB instance

§  Data have structure (schema) and are validated against it

§  ACID transactions

§  SQL is (mostly) a standard

37
Java and C# in depth

Web 2.0 a.k.a. Social Web

Poses new challenges that relational DBs don’t address well:

§  New kinds of traffic profiles (e.g. massive, “viral”
variations in traffic)

§  Switch from read-heavy to balanced read-write web
sites

§  Queries involving the absence of data

§  Large quantities of text and images

38
Java and C# in depth

Not Only SQL

§  Movement began in 2009, now becoming a commodity"

§  “Non-relational databases” would be more appropriate "

§ " Key-Value"

§ " Wide Column Store (HBase, Cassandra, SimpleDB)"

§ " Document"

§  And also XML DBs, OODBs, Graph DBs, Multi-model"

39
Java and C# in depth

 Commonalities of NoSQL solutions

§  Scale horizontally very well (no RAM sharing) for large
number of simple read/write operations (Web 2.0)"

§  (Mostly) No fixed schema, no standard query language"

§  ACID within a node, eventually consistent across cluster"

§  Terminology is generally inconsistent, but "

§ " All NoSQL systems store scalars (integers, strings),
BLOBs, attribute-value pairs"

§ " Some NoSQL systems store data structures (tuples,
documents, objects)"

40
Java and C# in depth

Key-Value Data Stores

§  Basically hash tables "

§  Examples: Redis, RaptorDB…"

§  Applied successfully for distributed content caching"

§  Offer insert, delete, and index lookup"

§  Use Map Reduce (Google patent) for indexing and
searching "

§ " Map: extract sets of key-value pairs"

§ " Reduce: merge and sort pairs to show results"

41
Java and C# in depth

Document Data Stores

§  Store documents made up of tagged elements"

§  Allow as values scalars, lists, other nested documents"

§  Secondary indexes, simple query mechanisms"

§  No schema (attribute names defined at runtime)"

§  Examples: CoachDB, MongoDb,…"

§  Used successfully for Web 2.0 applications"

