
Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

Distribution and web services

2
Java and C# in depth

From concurrent to distributed systems

Multiprocessor Multicomputer Distributed
system

Node
configuration

CPU CPU, RAM, net
interface

Complete
computer

Node peripherals All shared Shared excluding
maybe disks

Full set per node

Location Same rack Same room Possibly worldwide
Internode
communication

Shared RAM Dedicated
interconnect

Traditional network

Operating
systems

One, shared Multiple, same Possibly all
different

File systems One, shared One, shared Each node has
own

Administration One organization One organization Many organizations

From: A. S. Tanenbaum, Modern operating systems, 3rd edition, 2009.

3
Java and C# in depth

Models of distributed systems

§  There are many different models of distributed computing
§  Document-based (e.g., the WWW)
§  File-system based (e.g., NFS, Samba)
§  Object-oriented middleware (e.g., CORBA)
§  Tuple spaces (e.g., Linda)
§  Publish/subscribe (e.g., IBM Websphere MQ)
§  Grids
§  ...

§  In this class we’re presenting the web service model

4
Java and C# in depth

Outline

§  What’s a web service
§  Protocols for web services

§  WSDL
§  UDDI
§  SOAP

§  Web services styles
§  RPC
§  SOA
§  RESTful

§  Web services development styles
§  Assessment of web services

Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

What’s a web service

6
Java and C# in depth

What’s a web service?
A (relatively) recent technology for distributed computing

§  A software system designed to support interoperable
machine to machine interaction over a network -- W3C

§  A self-contained, self-describing client-server system that
enforces communication via XML messages

§  A web API accessible over a network, executed on a
remote system hosting the requested service

§  A buzzword (http://en.wikipedia.org/wiki/List_of_buzzwords)

7
Java and C# in depth

Web services and protocols
Web services (WSs) combine a variety of protocols to define,
locate, implement, and make functionalities interact

§ Description protocol layer: WSDL
§ define interface and configuration

§ Discovery protocol layer: UDDI
§ registry to locate WSs

§ Messaging protocol layer: SOAP (XML), RESTful
§ communication (higher-level than transport)

§ Transport protocol layer: HTTP(S), SMTP, FTP, RSS,
XMPP

8
Java and C# in depth

A high-level view

Source: http://en.wikipedia.org/wiki/Web_services

Client
endpoint

Server
endpoint

1

3

2

Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

Protocols for web services

10
Java and C# in depth

The WSDL protocol

Web Services Description Language
§ pronounced “wiz-dal” or “W-S-D-L”

§ XML-based, platform independent
§ Version 2.0 is endorsed by W3C
§ Integrated in Microsoft’s .NET platform

Describes:

§ The public interface of a web service
§ Details of protocol bindings
§ Configuration data

Used to generate client and server code stubs from an abstract
description

11
Java and C# in depth

The WSDL protocol

WSDL describes WSs as collections of network endpoints
(a.k.a. ports) via an XML document

§ A port type defines an abstract collection of supported
operations

§ it is an abstraction of the concrete port

§ A (concrete) port is defined by associating a network
address to a reusable binding

§ A collection of ports defines a service

12
Java and C# in depth

The WSDL protocol

§ A reusable binding is a concrete protocol and data format
specification for a specific port type

§ similar to a mapped operation

§ Through the binding, operations and messages are bound
to a concrete network protocol and message format

§ A message is an abstract description of the exchanged
data

Abstraction: the abstract definition of ports and messages
and their implementations are uncoupled, thus allowing
reuse

13
Java and C# in depth

The UDDI protocol

Universal Description, Discovery and Integration
§ pronounced “Yu dee”

§ XML-based, platform independent

A public registry for businesses on the WWW

§ Each business publishes a list of services

Each UDDI business registration consists of:

§ White pages: address, contact and known identifiers
§ Yellow pages: industrial categorizations
§ Green pages: technical info about offered services

14
Java and C# in depth

A brief history of UDDI

§ Written in the year 2000

§ Enforces a vision in which consumers link to providers
through a public brokerage system

§ By the end of 2005, 70% of Fortune-500 companies
planned to use it

§ In January 2006, IBM, Microsoft, and SAP announced they
were discontinuing their public UDDI nodes

§ anyway, according to Microsoft and IBM, the interoperability
and robustness of the UDDI was proven

15
Java and C# in depth

A brief history of UDDI

The idea was that companies could publish how they wanted
to interact, and other companies could find that information and
use it to establish a relationship. Needless to say, this isn't how
companies do business. There's always a human element to
establishing a relationship.

 -- Jason Bloomberg, senior analyst at ZapThink

16
Java and C# in depth

The UDDI protocol today

§ Mostly used in intranets (within-the-firewall)

§ Used as metadata management standard for Service
Oriented Architectures (more on this later)

17
Java and C# in depth

The SOAP protocol

Service Oriented Architecture Protocol
(formerly Simple Object Access Protocol)

§ Simple and extensible XML-based communication protocol

§ Platform and language independent

§ Is a basic message-wrapping framework

§ Has bindings to lower-level protocols such as HTTP,
HTTPS, SMTP, FTP, RSS, XMPP, ...

Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

Styles in web service design

19
Java and C# in depth

Styles of use of WSs

§  A WS combines multiple communication protocols
§  Different “styles” combine the protocols to build a

distributed application
§  Remote Procedure Call WSs (RPC)
§  Service Oriented Architecture of WS (SOA)
§  Representational Transfer State (REST)

§  The classification is not rigid at all, and hybrid solutions are
common

20
Java and C# in depth

RPC: Remote Procedure Call WSs

The RPC style uses WSs technology to implement a
client-server model of distributed computing
§  Distributed method calls available to clients

§ method invocation is location-transparent
§  The basic unit of service is usually the WSDL operation

§  operation-oriented style
§  How an RPC works:

§  a client (a network node) initiates the call by sending a
request to a server (also a network node)

§  the server responds immediately, while the client blocks
§  the call can fail due to unpredictable network issues

21
Java and C# in depth

RPC: Remote Procedure Call WSs

The RPC style uses WSs technology to implement a
client-server model of distributed computing
§  Middleware technologies with distributed objects offer

variants of RPC
§  Java RMI (Remote Method Invocation)
§ Microsoft’s DCOM (Distributed Component Object Model)
§ OMG’s CORBA (COmmon Request Broker Architecture)
§  (they all pre-date WS technologies)

§  In RPC WS there is not much decoupling between
offered services and local implementations

§  Today, RPC-style WSs are mostly discontinued

22
Java and C# in depth

SOA: Service-Oriented Architecture WSs
The SOA style builds a message-oriented distributed

application
§  The message is the basic unit of communication

§ message-oriented style
§  Typically uses SOAP for communication

§ may use RPC but only as implementation medium
§  In SOA WSs there is a loose coupling between offered

services and local implementations
§  The focus is on the WSDL contract, specifying:

§  Header (name, version, owner, type, …)
§  Functional aspects (functionality accomplished, service

operations, invocation details, ...)
§  Non-functional aspects (security constraints, allowed

failure rate, service level agreement, ...)

23
Java and C# in depth

RESTful WSs: Representational Transfer State
The RESTful style provides an interface with well-known,

standard operations to interact with stateful resources
§  Application state and functionality are divided into

resources
§  Every resource is uniquely addressable using a universal

syntax (usable in hyperlinks)
§  All resources share a uniform interface for the transfer of

state between client and resource
§  A constrained set of well-defined operations (e.g., GET,

POST, PUT, DELETE for HTTP)
§  A constrained set of content types

§  Protocols are client-server, stateless, cacheable, and
layered

§  Q) What’s a large distributed application designed in the RESTful style?

24
Java and C# in depth

RESTful WSs: Representational Transfer State
The RESTful style provides an interface with well-known,

standard operations to interact with stateful resources
§  Application state and functionality are divided into

resources
§  Every resource is uniquely addressable using a universal

syntax (usable in hyperlinks)
§  All resources share a uniform interface for the transfer of

state between client and resource
§  A constrained set of well-defined operations (e.g., GET,

POST, PUT, DELETE for HTTP)
§  A constrained set of content types

§  Protocols are client-server, stateless, cacheable, and
layered

§  Q) What’s a large distributed application designed in the RESTful style?
§  A) The WWW, using URIs, MIME types, HTTP, HTML, DNS, ...

25
Java and C# in depth

WS styles comparison: RESTful vs. RPC

§  RESTful focuses on resources
§  Resources are standardized
§  Commands are defined by simple combinations of

resources that are retrieved, stored, set, ...
§  Depends on functionalities of the network infrastructure

(e.g., caching and authentication for HTTP)

§  RPC focuses on commands/operations
§  Commands are customized
§  Commands are defined by custom methods of varying

complexity (depending on practices)
§  Increase the coupling between service provider (server)

and consumer (client)

Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

Styles in web service development

27
Java and C# in depth

Contract-first and contract-last WSs

Contract-first:
1.  Write WSDL contract
2.  Generate a skeleton implementation in the language of

choice
3.  Complete the implementation of the service that meets

the contract

Contract-last:
1.  Write an implementation of the service in the language

of choice
2.  Abstract the behavior of the implementation at the

interface as a WSDL contract

28
Java and C# in depth

Issues with contract-last development

§  Object/XML impedance mismatch
§  XML used for WSDL contracts
§  Object-oriented (OO) language used (typically) for

implementation

§  Fragility and performance

§  Reusability and versioning

29
Java and C# in depth

Object-XML impedance mismatch
Mismatch between the XML and OO models

§  XML and XSD are hierarchical data languages
§  They essentially describes trees
§  XSD (a.k.a. XML Schema) defines templates for (classes

of) XML documents
§  The implementation language is (typically) OO

§  XSD’s notion of “extension” is not conformant to OO
inheritance
§  E.g., no overriding possible, attributes are not

inherited, ...
§  Effects of the mismatch:

§  Non-portable types
 (from implementation language to XML)

§  Cyclic references (A à B à A)

30
Java and C# in depth

Fragility and performance

§  Different SOAP stack implementations may generate
different web service contracts from an implemented
class/application

§  Automatic translation from an (OO) implementation
language into XML may leak complex information to the
network
§  Dependencies in the implementation can be deep,

entangled, and difficult to foresee

§  This does not happen in contract-first development,
because a contract is simpler to understand fully and
guarantees a certain level of encapsulation

31
Java and C# in depth

Reusability and versioning

Maintaining a separate XSD schema definition for contracts
allows reuse in different scenarios.

§  In contract-last development, any contract change is first
reflected in a new class/interface definition. The previous
version of the code must still be mantained for clients
that still rely on it.

§  In contract first development, the old and new versions of
the contract can be implemented in the same class
(possibly using conversion tools for XML such as those
based on XSLT)

Java and C# in depth
Carlo A. Furia, Bertrand Meyer

Chair of Software Engineering

Assessment of web services

33
Java and C# in depth

What good are web services?

§  Provide interoperability between different web
applications running on different platforms

§  Represent one popular option out of many possible

models of distributed systems

§  Focus on a specific tradeoff: interoperability and
extensibility over ease-of-use and performance

§  Within a single-language environment, you’re probably
better off with solutions targeted to that language
§  Java’s RMI, Enterprise Java Beans, Java Spaces, ...
§  .NET framework and components
§  ...

