Java and C# in depth

Carlo A. Furia, Bertrand Meyer

Java: web service client
application example

©

Workflow

Goal: write a simple Java program that takes an email address
from the command line and determines if it is valid

1. Find a (free) web service that offers an email lookup
service

2. Get specification for the WS

= [nformal

= Formal: WSDL
3. Generate a Java stub from the WSDL
4. Compile the stub into bytecode

5. Write the main application, using the service according
to its specification

6. Compile the main application, referencing the compiled

Stu b Java and C# in depth 2

A suitable web service

= http://www.cdyne.com/
offers some (partially) free webservices

= http://wiki.cdyne.com/wiki/index.php?title=Email Verification

documents an email verification service

= Download the WSDL with the formal specification from:
http://ws.cdyne.com/emailverifyws/emailverify.asmx?wsdl

<wsdl:definitions targetNamespace="http://ws.cdyne.com/">
<wsdl :documentation>

These functions deal with Email Address Verification. CDYNE advertises a 100% SLA.
Try to find that kind of SLA from other web service vendors!

</wsdl:documentation>
<wsdl: types>
<s:schema elementFormDefault="qualified" targetNamespace="http://ws.cdyne.com/">
<s:element name="VerifyMXRecord">
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" name="email" type="s:string"/>

Java and C# in depth

Compile the WSDL into Java

©

Using the JAX-WS framework v. 2.2

* |nput WSDL.: emailverify.asmx.xml
= wsimport -keep emailverify.asmx.xml

» —-keep keeps the source . java files
(we will browse them to understand
how to use the stub)

= Generates various .java and .class files in package
com.cdyne.ws

(Also gives some warnings you can ignore)

Java and C# in depth

©

Write the main application (1/3)

import com.cdyne.ws.*;

public class EMV ({

public static void main(String[] args) {
// free, but with a limited number of requests
String testKey = "0";
if (args.length == 1) {
// exactly one argument: the email address
String addr = args|[0];
// create service client
EmailVerifySoap s = (new
EmailVerify ()) .getEmailVerifySoap();
// submit request
int res = s.verifyMXRecord (addr, testKey) ;

Java and C# in depth

5

©

Write the main application (2/3)

// interpret the result, according to the spec
switch (res) {
case 0: // invalid address

System.out.println (addr +
" is not a valid email address.");

break;

case -9999: // too many requests!
System.out.println(“Service unreachable.") ;
break;

default: // any other wvalue

System.out.println (addr +
" is a valid email address.");

break;

Java and C# in depth

6

©

Write the main application (3/3)

} else {
// zero or more than one argument

System.out.println("Invalid syntax.") ;

This class is stored in file EMV. java

Java and C# in depth

7

Compile the main application

©

Using the JAX-WS framework v. 2.2

= javac EMV. java
= generates: EMV.class

= Runit
= java EMV caf@inf.ethz.ch
= Qutput:

cafdinf.ethz.ch is a valid email address.

Java and C# in depth

8

Java WS development tools and frameworks

JAX-WS
Apache CXF
= Apache Axis2
= Metro

= Spring

Java and C# in depth

9

