
Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Functional programming:
an appetizer

2
Java and C# in depth

Imperative programming

Java and C# are fundamentally based on the imperative
paradigm of programming. Fundamental elements:

§  State (variables)
§  State modification (assignment)
§  Iteration (sequencing)

An imperative program is a sequence of state modifications on
variables.
 int power(int x, int n) { // x to the nth
 int result = 1;
 for (int i = n; i > 0; i--) result *= x;
 return result;
 }

3
Java and C# in depth

Functional programming

Functional programming is a different paradigm, based on the
notion of mathematical function. Fundamental elements:

§  Data (values)
§  Functions on data (maps)
§  Functional forms (function composition, higher-order

functions)

A functional program is the application of a function on values,
which returns values without side effects.
 int power(int x, int n) { // x to the nth
 if (n == 0) return 1;
 else return x*power(x, n-1);
 }

4
Java and C# in depth

Functional programming languages

Theoretical foundations:
§  Lambda calculus (Church, 1932)

Some functional programming languages:

§  LISP (McCarthy, 1958)
§  its many dialects: Clojure, Scheme, Racket, ...

§  ML (Milner & al., 1973)
§  Erlang (Ericsson, 1986)
§  Haskell (Peyton Jones & al., 1990)
§  F# (Microsoft .NET, ~2000s)

5
Java and C# in depth

Functional + object-oriented

A few programming languages have tried to combine functional
and object-oriented programming models.

§  Functional: data-oriented computations, no side-effects,
higher-order functions.

§  Object-oriented: encapsulation, inheritance,
polymorphism.

Two noticeable examples:
§  Scala is a Java dialect combining object-oriented and

functional.
§  C# has incorporated elements of functional programming

since version 3 (mostly for the LINQ framework).

6
Java and C# in depth

Functional elements

We now make a short presentation of some functional features
available in Scala and C#.

§  Data-oriented computations
§  Anonymous functions
§  Type inference
§  List comprehensions
§  Pattern matching
§  Immutable collections

This is not meant to be a comprehensive (or even self-
contained) presentation.

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Scala: a short overview

8
Java and C# in depth

Scala

From www.scala-lang.org:

Scala is a general purpose programming language designed to
express common programming patterns in a concise, elegant,
and type-safe way. It smoothly integrates features of object-
oriented and functional languages, enabling Java and other
programmers to be more productive.

9
Java and C# in depth

Scala
Mainly developed by Martin Odersky’s group at EPFL.
§ First version: 2003
§ Latest version: 2.10

§ Scala compiles to Java bytecode, and hence it runs on the
JVM.
§ It is interoperable with Java: Java library can be used in
Scala.
§ Elements of functional programming with object-oriented
encapsulation mechanisms
§ Gets rid of some of Java’s “legacy” features (e.g., primitive
types are objects too in Scala)
§ Main selling points: powerful collection library and
parallelization

10
Java and C# in depth

Data-oriented computations

In Scala, there’s no distinction between statements and
expressions: every expression has a value. The last
expression evaluated in a function definition is the one
returned.

 // function definition
 def square(x: Int): Int = {
 x*x;
 }
 // attribute definition
 var sq: Int = square(2);
 // constant definition
 val sq: Int = square(2);

11
Java and C# in depth

Anonymous functions

In Scala, functions are objects. A convenient syntax exists to
declare functional expressions which can be passed around as
arguments.

 // anonymous function definition
 (x: Int) => x*x*x
 // passed as argument
 doAll(myList, (x: Int) => x*x*x);
 // defined and immediately evaluated
 val res = ((x: Int) => x*x*x)(5);
 println(res); // print 125=5*5*5

12
Java and C# in depth

Type inference

An extensive type inference system makes type declarations
optional in many cases.

 // Return type inferred
 def square(x: Int) = { x*x; }
 // Variable type inferred
 var sq = square(2);
 // Expression type inferred
 (x: Int) => x > 10

13
Java and C# in depth

List comprehensions

List comprehensions define complex expressions over lists
(and other collections). They can translate complex function
applications concisely and efficiently.

 // List of integers from 1 to 10
 for (x <- 1 to 10) yield x
 // List of squares of odd numbers
 between 1 and 100

 for (x <- 1 to 100 if x % 2 == 1) yield x*x
 // Nested expressions
 for (x <- 1 to 10; y <- 1 to x; if x % y == 0)
 yield x+y;

14
Java and C# in depth

Pattern matching

Pattern matching is a flexible construct to define complex
conditional expressions. It is typically used on lists or
collections.

 // Sum all elements in list
 def Sum(list: List[Int]): Int = list match {
 // if list is empty, the sum is zero
 case Nil => 0;
 // first element (head) followed by tail
 case head :: tail => head + Sum(tail);
 }

15
Java and C# in depth

Immutable collections

Scala distinguishes between mutable and immutable objects.
All Scala collection classes are immutable by default (mutable
variants are still available). Methods working on immutable
objects behave as mathematical functions: they return fresh
objects with the result, but do not modify the argument objects.

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Functional programming with C#:
a short overview

17
Java and C# in depth

LINQ

The Language Integrated Query (LINQ) framework
extends .NET with native-language support for SQL-like
queries and other declarative/functional features.
§  First version: 2007 with .NET 3.5

LINQ greatly increases the expressiveness of C#, and makes it
possible to introduce significant elements of functional
programming in generic C# applications.

18
Java and C# in depth

Anonymous functions
LINQ offers lambda expressions as a convenient syntax to
declare functional expressions which can be passed around as
arguments. Lambda expressions can also be assigned to
variables of delegate types.

 // anonymous function definition
 (int x) => x*x*x
 // passed as argument
 doAll(myList, (int x) => x*x*x);
 // defined and then evaluated
 delegate int Int2Int(int i);
 Int2Int fun = (int x) => x*x*x;
 // print 125=5*5*5
 Console.WriteLine(fun(5));

19
Java and C# in depth

Type inference

We have already seen C#’s type inference mechanisms in
action with variables declared as var and with generic actual
parameters.

 public static T copy <T> (T o)
 where T: ICloneable {
 return (T) o.Clone();
 }
 // Variable type inferred
 var sq = square(2);
 // Generic type inferred
 var c = copy(new int[] {1, 4, 5});
 // Expression type inferred
 (int x) => x > 10

20
Java and C# in depth

List comprehensions

List comprehensions define complex expressions over lists
(and other collections). They are available in LINQ through
SQL-like syntax.

 // IEnumerable<int> of integers from 1 to 10
 Enumerable.Range(1, 10)
 // Squares of odd numbers between 1 and 100
 from x in Enumerable.Range(1, 100)
 where x % 2 == 1 select x*x
 // Nested expressions
 from x in Enumerable.Range(1, 10)
 from y in Enumerable.Range(1, x)
 where x % y == 0 select x+y;

21
Java and C# in depth

Pattern matching
C# and LINQ do not offer general support for pattern matching,
but head-tail recursion is often implementable through other
library features.

 // Sum all elements in list
 def List<int> Sum(List<int> list) {
 // if list is empty, the sum is zero
 if (list.Count == 0)
 return 0;
 // first element (head) followed by tail
 else return list[0] +
 Sum(Enumerable.Skip(list, 1).ToList());
 }

22
Java and C# in depth

Immutable collections

C# generic collections are mutable. However, most of the
extension methods provided as part of the LINQ framework
behave as mathematical functions: they return fresh objects
with the result, but do not modify the argument objects.
See the example of Skip in the previous slide.

Java and C# in depth
Carlo A. Furia, Marco Piccioni, Bertrand Meyer

Chair of Software Engineering

Example: Quicksort in functional style

24
Java and C# in depth

Quicksort

To sort an array a, the quicksort algorithm work as follows.
1.  Pick an element in a – called the “pivot”.

(The correctness of quicksort doesn’t depend on the
pivot choice, but its running time does. We’ll just pick
the middle element as pivot in our examples).

2.  Partition a in three segments:
§  Lower part: elements less than the pivot
§  Mid part: elements equal to the pivot
§  Upper part: elements greater than the pivot

3.  Recursively sort the lower and upper parts.

25
Java and C# in depth

Quicksort in Scala

 def sort(a: List[Int]): List[Int] = {
 if (a.length <= 1) {
 a;
 } else {
 val pivot = a(a.length / 2);

 val low = a.filter(x => x < pivot);
 val mid = a.filter(x => x == pivot);

 val up = a.filter(x => x > pivot);
 sort(low) ++ mid ++ sort(up);
 }
 }

26
Java and C# in depth

Quicksort in C# with LINQ

IEnumerable<int> sort(IEnumerable<int> a) {
 if (a.Count() <= 1) {
 return a;
 } else {
 var pivot = a.ElementAt(a.Count() / 2);
 var low = from x in a where x < pivot select x;
 // Alternative syntax
 var mid = a.Where(x => x == pivot);
 var up = from x in a where x > pivot select x;
 return sort(low).Concat(mid.Concat(sort(up)));

 }
}

27
Java and C# in depth

Complexity

What’s the complexity of Quicksort implemented functionally?
§  Asymptotically it’s the same as in the imperative

implementations: partitioning has linear cost, and the
number of recursive calls is the same.

§  There is, however, less control on how the compiler
handles recursion and memory allocation.
§  List comprehensions are normally highly optimized
§  But they cannot always beat custom-made optimizations or

in-place implementations

28
Java and C# in depth

Observation

Standard imperative implementations of Quicksort partition in
two parts (less than or equal to, and greater than) rather than
three. What happens if you set up the recursion as is now but
with this two-fold partitioning?

§  Hint: consider the list [3, 2, 9, 1, 7]

