

Java & Eiffel:

An objective personal assessment

Bertrand Meyer
Chair of Software Engineering, ETH Zurich

2

Topics

1.  Background

2. Common elements

3. Contracts

4. Type system

5. Inheritance

6. Agents

7. Other mechanisms

8. Syntax, ease of learning; conclusion

3

Background: Eiffel

Eiffel 1: 1986 (contracts, multiple inheritance,
 genericity, deferred classes…)

Eiffel 2: 1988 (exceptions, constrained genericity)
Eiffel 3: 1991 (uniform type system,

 infix/prefix features, …)
1997: Agents, Precursor
2005-2006: ECMA/ISO standard: attached types,
numerous clarifications and simplifications
2008-now: Void safety, concurrency (SCOOP)
In progress: advanced functional features, safe covariance

4

Background: Java

1995: 1.0
1997: 1.1

 Microsoft JVM, Swing
1999: 1.2 (Java 2)

 Java Foundation Classes
2000: 1.3

Performance improvements, Hotspot
2004: 1.5 (5.0):

 Metadata , genericity
2006: Java SE 6, support for scripting languages
2011: Java SE 7, support for dynamic languages
2014 (expected): Java SE 8, lambda expressions

C#

-  Originally 1999 (COOL), part of .NET
-  2002: C# 1.0
-  2006: C# 2.0, generics, partial types
-  2007: C# 3.0, extension methods, lambda expressions
-  2010: C# 4.0, generic co- and contravariance
-  2012: C# 5.0, asynchronous methods

5

6

What’s common

Not C++
Not backward-compatible with C (but Java closer to C,
especially syntax)
Object-oriented languages
Statically typed languages
Dynamic binding by default
Type system permits garbage collection
Genericity (built-in in Eiffel, late addition in Java)

Portable implementations

7

Overall structure

Java: classes, but also static methods

Eiffel: classes throughout – unit of both type and module
decomposition

The problem with attribute export status

If an attribute is exported, clients can both read it and
assign any value that they want to it.

Ex: heater.temperature = 19;

9

Information hiding

In Java:

 Can still do x.a := v

This design mistake (in my opinion) comes from C++: designers did not
understand the Uniform Access principle

Exporting an attribute means exporting it read-write

Eiffel approach (Uniform Access):

Ø Query can be attribute or function
Ø  Client does not know which – only that it’s a query

 (difference not visible in “contract view” of class)
Ø  Exporting a query means exporting it to read; there’s nothing

wrong or dangerous with this
Ø To provide setter privileges: write procedure
Ø  Can use assignment-like syntax for setter

10

Language style

Consistency principle

The language should offer
one good way to do anything useful

11

Language style

Compatibility principle

Traditional notations should be supported
with an O-O semantics

12

Infix and prefix operators

In

 a − b

the − operator is “infix”
 (written between operands)

In

 − b

the − operator is “prefix”

 (written before the operand)

13

The object-oriented form of call

some_target.some_feature (some_arguments)

For example:

 my_figure.display

 my_figure.move (3, 5)

 x := a.plus (b) ???????

14

Operator features

expanded class INTEGER feature

 plus alias "+" (other : INTEGER): INTEGER
 -- Sum with other
 do ... end

 times alias "*" (other : INTEGER): INTEGER
 -- Product by other
 do ... end

 minus alias "-" : INTEGER
 -- Unary minus
 do ... end
 ...
 end

Calls such as i.plus (j) can now be written i + j

15

Possible client privileges in Eiffel

Secret
Read,

restricted write Full write Read-only

The attribute may be:

a.att
invalid

a att permitted in C (for access)

Modify through
a.some_procedure

Modify through
a.set_att(v)

If class A has an attribute att : SOME_TYPE, what
may a client class C with

 a : A
do with a.att ?

C A
a: A att

16

Abstraction and client privileges

Read access if attribute is exported
Ø a.att is an expression.
Ø An assignment a.att := v would be syntactically illegal!

(It would assign to an expression, like x + y := v.)

If class A has an attribute att : SOME_TYPE, what
may a client class C with

 a : A
do with a.att ?

C A
a: A att

17

Applying abstraction principles

Beyond read access: full or restricted write, through
exported procedures.

Full write privileges: set_attribute procedure, e.g.

 set_temperature (u : REAL) is
 -- Set temperature value to u.
 do
 temperature := u
 ensure
 temperature = u
 end

Client will use e.g. x.set_temperature (21.5)

18

Other uses of a setter procedure

set_temperature (u : REAL) is
 -- Set temperature value to u.
 require
 not_under_minimum: u >= -273
 not_above_maximum: u <= 2000
 do
 temperature := u
 update_database
 ensure
 temperature_set: temperature = u
 end

19

Having it both ways: assigner commands

Make it possible to call a setter procedure

temperature: REAL assign set_temperature

Then the syntax

 x.temperature := 21.5

is accepted as a shorthand for x.set_temperature (21.5)

Retains contracts etc.

20

Eiffel: providing an assigner command

class C [G] feature

 item : G

 put (x: G)
 require
 …
 do
 item := x
 ensure
 item = x
 end

end

Client code:

 n : INTEGER
 x : C [INTEGER]

21

Information hiding

class
 A

feature

 f ...
 g ...

feature {NONE }

 h, i ...

feature {B, C }

 j, k, l ...

feature {A, B, C}

 m, n…
end

Ø  a1.f, a1.g : valid in any client

Ø  a1.h : invalid everywhere
 (including in A’s own text!)

Ø  a1.j : valid only in B, C and their
descendants

 (not valid in A!)

Ø  a1.m : valid in B, C and their descendants,
 as well as in A and its descendants

Status of calls in a client with a1:
A:

22

An example of selective export

LINKABLE exports its features to LINKED_LIST
Ø Does not export them to the rest of the world
Ø Clients of LINKED_LIST don’t need to know about
LINKABLE cells.

Haldenegg

item right

Central

item right

Haupt-
bahnhof

item right

first_element

active

count 3

23

Exporting selectively

class

LINKABLE [G]
feature {LINKED_LIST }

 put_right (...) is do ... end

 right: G is do ... end

 ...

end

These features are selectively
exported to LINKED_LIST and its
descendants (and no other classes)

24

Information hiding

Information hiding only applies to use by clients, using dot
notation or infix notation, as with a1.f (Qualified calls).

Unqualified calls (within class) not subject to information
hiding:

 class A feature {NONE }
 h is ... do ... end
 feature

 f is
 do
 ...; h ; ...
 end
 end

25

Possible client privileges in Java

Access specifiers (placed in front of each definition for
each member of the class):

Ø  public
Ø  protected
Ø  Package access (no keyword)
Ø  private

26

Access specifiers

public
Ø  The member declared to be public is available to everyone

private
Ø  No one can access that member except the class that contains

that member, inside methods of that class
protected

Ø  Member can be accessed by
•  Descendants of the class
•  Classes in the same package

Package access
Ø  Default
Ø  Also called “friendly”
Ø  All other classes in current package have access to that

member
Ø  To all classes outside of current package, the member appears

to be private

27

Access modifiers at the class level

Either public or default (no access modifier)
Ø  public

•  Appears before the class keyword
•  Makes the class available to a client programmer

Ø  No access modifier
•  Makes the class available only within the package

No private and protected!

28

Comparison: Eiffel vs. Java

Access level Eiffel Java
only current class - private
only current class and its
descendants feature {NONE} -

current class + "friends"
feature {B,C} ("friends" = B, C and
their descendants)

default ("friends" = classes in the
same package)

current class + its
descendants + "friends"

feature {A,B,C} ("friends" = B, C
and their descendants, A = current
class)

protected ("friends" = classes in
the same package)

everyone feature {ANY} public

29

More comparison: Eiffel vs. Java

Eiffel - no package mechanism
Eiffel - no way of hiding a feature from your descendants

Ø  Module viewpoint: If B inherits from A, all the
services of A are available in B (possibly with a
different implementation).

Java - no way of exporting a member only to self and
descendants
Java - no language rule to distinguish between access to
attributes for reading and for writing
Java - additional way of making a class available outside its
package or not
Access control more fine grained in Eiffel

30

C# access modifiers

C# adds the internal access modifier, which restricts access within
the assembly
Classes can be:

Ø  public
Ø  internal

Class members can be:
Ø  public - accessible to everyone
Ø  internal - accessible only from current assembly
Ø  protected - accessible only from containing class or types

derived from containing class (a.k.a. “family” export status)
Ø  protected internal - accessible only from current

assembly or types derived from the containing class
Ø  private - accessible only from containing type

31

The problem with attribute export status

If an attribute is exported, clients can both read it and
assign any value that they want to it.

Ex: heater.temperature := 19

32

The C# solution: properties

public class Heater {
 private int TemperatureInternal;

 public int Temperature {
 get {return TemperatureInternal;}
 set {
 if (! InRange(value)) {
 throw new ArgumentException
 (“Temperature out of range");
 }

 Temperature Internal = value;

 NotifyObservers();
 }
 }

attribute
property

33

Assignment commands

It is possible to define a query as

temperature: REAL assign set_temperature

Then the syntax

 x.temperature := 21.5

is accepted as an abbreviation for

 x.set_temperature (21.5)

Retains contracts and any other supplementary operations

Not an assignment, but a
procedure call

34

Contracts

Elements of specification associated with the code
Help in: analysis, design, debugging, testing, maintenance,
management

Eiffel: Built-in

Java: additions (iContract, JML)

JML example (www.eecs.ucf.edu/~leavens/JML-release/org/jmlspecs/samples/dbc/Polar.java)

public /*@ pure @*/ strictfp class Polar extends ComplexOps
 /** The angle of this number. */
 private double ang;
 /** Initialize this polar coordinate number … */
 /*@ requires mag >= 0 && Double.NEGATIVE_INFINITY < ang
 @ && ang < Double.POSITIVE_INFINITY;
 @ ensures this.magnitude() == mag;
 @ ensures this.angle() == standardizeAngle(ang);

 @ also
 @ requires mag < 0 && Double.NEGATIVE_INFINITY < ang
 @ && ang < Double.POSITIVE_INFINITY;
 @ ensures this.magnitude() == - mag;
 @ ensures this.angle() == standardizeAngle(ang+StrictMath.PI);

 @ also @ requires Double.isNaN(mag) || Double.isNaN(ang)
 @ || Double.NEGATIVE_INFINITY == ang
 @ || ang == Double.POSITIVE_INFINITY;
 @ signals_only IllegalArgumentException; @*/

35

36

Type system

Java:
Ø “Primitive” types are special, e.g. int, bool, float
Ø Special class types: Integer, Float, …

Eiffel: every type is based on a class

 e.g. INTEGER, REAL, BOOLEAN

37

Conversions in Java

Built-in conversions between primitive types

For reference types: type narrowing (equivalent of object
test)

38

Conversions

What is the difference between the following (in Eiffel
syntax)?

Ø  my_polygon := my_rectangle

Ø  my_real := my_integer

POLYGON

RECTANGLE
...

+

39

Conversion

Try to avoid having a special rule for e.g.

 3 + 5.0

40

Can we generalize conversion?

Without conversion: we exchange strings with .NET as
Ø create my_string l from_dotnet (her_dotnet_string)
Ø dotnet_routine (("ABCDE ") l to_dotnet)

With conversions: convert to out-of-control type:

Ø my_string := her_dotnet_string

Ø dotnet_routine ("ABCDE ")

41

Basic type hierarchy

42

Resolution

Introduce explicit conversion mechanism

As in rest of language, governs all forms of
“attachment” (assignment or argument passing)

43

First change

class STRING create
 make, from_dotnet

feature

 from_dotnet (s : DOTNET_STRING)
 do
 ...
 end

convert
 from_dotnet ({DOTNET_STRING })

44

Second change

class STRING create
 make, from_dotnet

feature

 to_dotnet: DOTNET_STRING
 do
 ...
 end

convert
 from_dotnet ({DOTNET_STRING})

to_dotnet : {DOTNET_STRING }

45

Can we generalize conversion?

Without conversion: we exchange strings with .NET through

Ø create my_string.from_dotnet (her_dotnet_string)

Ø dotnet_routine (("ABCDE ").to_dotnet)

With conversions:

Ø my_string := her_dotnet_string

Ø dotnet_routine ("ABCDE ")

Now: abbreviation
for this

46

First change

class STRING create
 make, from_dotnet

feature

 from_dotnet (s : DOTNET_STRING)
 do
 ...
 end

convert
 from_dotnet ({DOTNET_STRING })

47

The other way around?

Without conversion: we exchange strings with .NET through

Ø create my_string •from_dotnet (her_dotnet_string)

Ø dotnet_routine (("ABCDE ")•to_dotnet)

With conversions:

Ø my_string := her_dotnet_string

Ø dotnet_routine ("ABCDE ") Now: abbreviation
for this

48

Second change

class STRING create
 make, from_dotnet

feature

 to_dotnet: DOTNET_STRING
 do
 ...
 end

convert
 from_dotnet ({DOTNET_STRING})

to_dotnet : {DOTNET_STRING }

49

Keeping things simple and clear

50

For programmer-defined types

my_date := [13, ″May″, 2013]

51

Related change

Allow 5.0 + 3 and 3 + 5.0

5.0 + 3 is a shortcut for (5.0).plus (3)

But we want 3 + 5.0 to be a shortcut for

 ((3).to_real).plus (5.0) !

52

Target conversion

In class REAL:

 plus alias ″+″ convert
 do
 …
 end

Control structures

across my_list as l loop
 op (l.item)

end

require

 across emplist as e all e.item.is_full_time end

For across to be applicable, it suffices that the type of
the structure inherit from ITERABLE

53

54

Multiple inheritance in Eiffel

TRAIN_CAR RESTAURANT

RESTAURANT_
CAR

55

Multiple inheritance

A class may have two or more parents.

What not to use as an elementary example:
TEACHING_ASSISTANT inherits from TEACHER and
STUDENT.

TEACHER STUDENT

TEACHING_
ASSISTANT

56

Examples of multiple inheritance

Combining separate abstractions:

Ø  Restaurant, train car
Ø  Calculator, watch
Ø  Plane, asset
Ø  Home, vehicle
Ø  Tram, bus

57

Warning

Forget all you have heard!
 Multiple inheritance is not the works of the devil
 Multiple inheritance is not bad for your teeth

(Even though Microsoft Word apparently does not like it:

)

58

This is repeated, not just multiple inheritance

A

D

B C

A

D

Not the basic case!
(Although it does arise often; why?)

59

Composite figures

60

Multiple inheritance: Composite figures

A composite figure

Simple figures

61

Defining the notion of composite figure

COMPOSITE_
FIGURE

center
display
hide
rotate
move
…

count
put
remove
…

FIGURE
LIST

[FIGURE]

62

In the overall structure

COMPOSITE_
FIGURE

FIGURE LIST
[FIGURE]

OPEN_
FIGURE

CLOSED_
FIGURE

SEGMENT POLYLINE POLYGON ELLIPSE

RECTANGLE

SQUARE

CIRCLE
TRIANGLE

perimeter+

perimeter*

perimeter++

diagonal

perimeter++

perimeter++

perimeter+

63

A composite figure as a list

Cursor

item

forth

after

64

Composite figures

class COMPOSITE_FIGURE inherit

 FIGURE

 LIST [FIGURE]
feature

 display
 -- Display each constituent figure in turn.
 do
 from start until after loop

 item.display
 forth
 end
 end

 ... Similarly for move, rotate etc. ...
end

Requires dynamic
binding

65

Going one level of abstraction higher

A simpler form of procedures display, move etc. can be
obtained through the use of iterators

Use agents for that purpose

66

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
 >, >=,
…

+, –,
*, /
…

(total order
relation)

(commutative
ring)

67

The Java-C# solution

No multiple inheritance for classes

“Interfaces”: specification only (but no contracts)

Ø  Similar to completely deferred classes (with no
effective feature)

A class may inherit from:

Ø  At most one class
Ø  Any number of interfaces

68

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
 >, >=,
…

+, –,
*, /
…

(total order
relation)

(commutative
ring)

69

How do we write COMPARABLE?

deferred class COMPARABLE feature

end

less alias "<" (x : COMPARABLE [G]): BOOLEAN
 deferred
 end

less_equal alias "<=" (x : COMPARABLE): BOOLEAN
 do
 Result := (Current < x or (Current = x))
 end

greater alias ">" (x : COMPARABLE): BOOLEAN
 do Result := (x < Current) end

greater_equal alias ">=" (x : COMPARABLE): BOOLEAN
 do Result := (x <= Current) end

70

Lessons from this example

Typical example of program with holes

We need the full spectrum from fully abstract (fully
deferred) to fully implemented classes

Multiple inheritance is there to help us combine
abstractions

71

Non-conforming inheritance

class
 ARRAYED_LIST [G]

inherit
 LIST [G]

 ARRAY [G]

feature

 … Implement LIST features using ARRAY features
…
end

inherit {NONE }

ARRAY LIST

ARRAYED
_LIST

Non-conforming
inheritance

72

Multiple inheritance: Name clashes

f

C

f A B

?

73

Resolving name clashes

f

rename f as A_f

C

f A B

A_f, f

74

Consequences of renaming

a1 : A
b1 : B
c1 : C
...
c1.f
c1.A_f
a1.f
b1.f

rename f as A_f

C

f A B

A_f, f

f

Invalid:
Ø a1.A_f
Ø b1.A_f

75

Are all name clashes bad?

A name clash must be removed unless it is:
Ø  Under repeated inheritance (i.e. not a real clash)

Ø  Between features of which at most one is effective
(i.e. others are deferred)

76

Another application of renaming

Provide locally better adapted terminology.
Example: child (TREE); subwindow (WINDOW)

77

Overloading

Present in C++, Java, C#, not in Eiffel

Java rule: several features may have the same name if
signature (argument types and numbers) are different

Example

 print (x: INTEGER)
 print (x: INTEGER; f: FORMAT)
 print (x: REAL)

78

Risks of overloading

Conflicts with inheritance, polymorphism, dynamic binding
Causes confusion: what does a.f (xx) mean?

A

B

X

Y

f (x : X)
f (y : Y)

f ++ (x : X)
f ++ (y : Y)

See: Overloading vs Object Technology, in in JOOP (Journal of
Object-Oriented Programming), vol. 14, no. 4, Oct-Nov 2001,
se.ethz.ch/~meyer/publications/publications/joop/overloading.pdf

79

Where is overloading when we need it?

class POINT feature
 …
 set_cartesian (x : REAL ; y : REAL) do … end

 set_polar (ro : REAL ; theta : REAL) do … end

 …

end

80

Constructors

C++, Java: name of class, overloaded

 x = new POINT (1, 0, “cartesian”);

Eiffel: specific creation procedures

 create x.set_cartesian (1, 0)

Can be used as normal procedures: x.set_cartesian (1, 0)

No special rules for inheritance; each class’s constructors
are independent from those of parents.

81

Exception handling: C++/Java

Try operation and provide alternative mechanism:

 try {
 instructions_1
 } catch (A a1) {
 instructions_A
 } catch (B b1)
 instructions_B
 …
 finally {
 cleanup}

82

Raising and specifying exceptions

 public static int f (…) throws my_exception
 {
 … throw my_exception
 }

Then any caller must catch or throw my_exception.

But: only for programmer exceptions.

83

Agents

Mechanism to encapsulate operations into objects
Example: Eiffel Event Library

On the publisher side, e.g. GUI library:

Ø (Once) declare event type:
 click: EVENT_TYPE [TUPLE [INTEGER, INTEGER]]

Ø (Once) create event type object:
 create click

Ø To trigger one occurrence of the event:
 click.publish ([x_coordinate, y_coordinate])

On the subscriber side, e.g. an application:
 click.subscribe (agent my_procedure)

84

Another example of using agents

my_integrator.integral (, a, b)

my_integrator.integral (agent your_function (, u, v), a, b)

agent my_function

?

a

b
∫ my_function (x) dx

a

b
∫ your_function (x, u, v) dx

No agents (“closures”) in Java

Use inner classes

See: java.sun.com/docs/white/delegates.html

85

86

Covariance

class DRIVER feature
 transport : VEHICLE
 set_transport (v : VEHICLE) do … end

 …
end

class TRUCK_DRIVER inherit
 DRIVER
 redefine transport, set_transport end
feature
 transport : TRUCK
 set_transport (t : TRUCK) do … end
 …
end

 TRUCK_
DRIVER

DRIVER

 TRUCK

VEHICLE

87

Anchored types

class TRUCK_DRIVER inherit
 COMPANY

 redefine transport end
feature

 transport : TRUCK
 -- No need to redefine set_transport
 …

end

class DRIVER feature
 transport : VEHICLE
 set_transport (v : like transport) do… end

 …
end

88

Type redefinition rule

May redefine argument or result to a descendant of the
original type

89

Covariance pros and cons

Covariance (Eiffel):
 Realistic modeling

But:

 Type checking issues

For that reason Java and many other languages are
novariant

This is safer but pushes the problem to the programmer

90

The problem with covariance

c: COMPANY
bc: BLOOMBERG_COMPANY

v: VALUATION

…
c := bc

class COMPANY feature
 valuation: VALUATION
 set_valuation (v: like valuation) is

 do … end
end

class BLOOMBERG_COMPANY inherit
 COMPANY
 redefine valuation end
feature
 valuation: VALUATION
 -- No need to redefine set_valuation

 …
end

c.set_valuation (v)

Catcall!

91

Catcalls

Follow from combination of:

Ø  Polymorphism
Ø  Covariant redefinition

CAT stands for “Changed Availability or Type”

The attached mechanism of ISO Eiffel removes all catcall
possibilities

92

Once routines

If instead of

 r is
 do
 ... Instructions ...
 end

you write

 r is
 once
 ... Instructions ...
 end

then Instructions will be executed only for the first call by any
client during execution. Subsequent calls return immediately.

In the case of a function, subsequent calls return the result
computed by the first call.

93

Implementation

Java: virtual machine

Eiffel: translation to C or .NET virtual machine
Melting Ice Technology

94

Syntax

Java:
Ø Symbol-oriented, C-like

Eiffel:

Ø Basic structures use keywords, lower-level elements
use some symbols

Ø Keyword consistency: simplest applicable word
(require, not requires; feature, not features).

95

Ease of learning

Usenet posting by David Clark, U. Canberra, taught both Eiffel &
Java:

My experience has been that students do not find Java easy to
learn. Time and again the language gets in the way of what I
want to teach....The first thing they see is

public static void main (String [] args) throws IOException;

 There are about six different concepts in that one line which
students are not yet ready to learn....”

