Java and C+# in depth

ETH Zurich

Date: 3 June 2010

Family name, first name:cccccommiiiiiiiii e
Student NUIMDET: ..ot

I confirm with my signature, that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

SIZNATUTE: .oeiiiiiiiiiieiiiie e

Directions:

e Exam duration: 105 minutes.

e Use a pen (not a pencil)!

e Please write your student number onto each sheet.

e All solutions have to be written directly onto the exam sheets. If you
need more space for your solution ask the supervisors for a sheet of official
paper. You are not allowed to use other paper.

e You should answer all questions (no questions are optional).

e All personal documents are allowed. Exchanging documents during the
examination would mean failing the examination.

e Electronic equipment (laptops, cell phones, PDA, etc.) are not allowed.
Using them would mean failing the examination.

e Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

e Please write legibly! We will only correct solutions that we can read.

e Manage your time carefully (take into account the number of points for
each question).

e Please immediately tell the supervisors of the exam if you feel disturbed
during the exam.

Good luck!

ETHZ D-INFK

Prof. Dr. B. Meyer Java and C# in Depth — Exam
Question | Number of possible points | Points
1 16
2 15
3 17
4 15
5 10
TOTAL 73

1 C+# and Java Fundamentals (16 Points)

All questions below refer to the Java language version 5.0 and C# language
version 3.0 as taught in the course. Put checkmarks in the checkboxes corre-
sponding to the correct answers. Multiple correct answers are possible; there is
at least one correct answer per question. A correctly checked or unchecked box
is worth 0.5 points. An incorrectly checked or unchecked box is worth 0 points.

Example. Which of the following statements are true?
The sun is a mass of incandescent gas.
2x2=4

Britney Spears is a honoured doctor of ETH.
“Rosti” is a kind of sausage.

0.5 points
0 points
0.5 points
0 points

a0 o
XOOX

1. Consider the following Java code:

String a = "Good luck!”;
String b = ”Good” ;
String ¢ = b;
b += " luck!”;
System.out. print (
System.out.print (
System.out. print (
System.out. print (;

(

(

(

~—

System.out. print (a.equals(b));
System.out.print(’ ’);
System.out.print (a.equals(c));

What is printed?

a. true false true false
b. false true true true
c. false false false false
d. false false true false

oooo

2. Consider the following C# code (similar to the Java code from the previous

question):

string a = ”Good luck!”;
string b = ”Good” ;
string ¢ = b;

b 4= "7 luck!”;

Console. Write(a = b);
Console. Write(’)
c);

Console . Write (b
Console. Write(’)

Console. Write (a.Equals(b));
Console. Write (> 7);

Console. Write (a. Equals(c));

What is printed?

a. true false true false
b. false true true true
c. false false false false
d. false false true false

ooon

ETHZ D-INFK
Prof. Dr. B. Meyer

Java and C# in Depth — Exam

3. You would like a method of your public C# class to be visible to other
classes inside the same assembly, as well as to every subclass (including
those outside the assembly). Which visibility modifier provides exactly

the desired access?

internal
protected
protected internal

a0 o

outside the assembly.

4. Consider the following C# code:

It is not possible to express this level of visibility in C#.
This is not needed, because it is not allowed to add subclasses

(]
]
]
O
]

1 | class Test {

2 public static int x = 3;
3 public static int y;

4

5 public int a = x;

6 public int b;

7

8 static Test() {

9 X = 5H;

10 }

11

12 public Test () {

13 X++;

14 }

15

16 static void Main() {

17 Test t1 = new Test ();
18 Test t2 = new Test ();
19 Console . Write (Test.x);
20 Console. Write (’ 7);
21 Console. Write (Test.y);
22 Console. Write (7);
23 Console . Write (t2.a);
24 Console. Write (7);
25 Console. Write (t2.b);
26 }

27 |}

What is printed as a result of running Main? (A question mark denotes
an undefined value, i.e., any integer value can be printed.)

6050
7060
6757
3037
4040
The code does not compile

e A0 T

oooooo

5. Consider the following Java code:

try {

try {
throw new RuntimeException ();

} catch (RuntimeException e) {
System.out.println (”Inner runtime exception”);
throw e;

} catch (Exception e) {
System.out.println (”Inner exception”);

} finally {
System.out.println (” Finally!”);
throw new Exception ();

} catch (RuntimeException e) {

System.out.println (”Outer runtime exception”);
} catch (Exception e) {

System.out.println (”Outer exception”);

Which of the following lines are printed?

a. “Inner runtime exception”
b. “Inner exception”

c. “Finally!”

d. “Outer runtime exception”
e. “Outer exception”

f. The code does not compile

oooooo

6. Which of the following declarations produce a compilation error in Java?
(Remember that Integer is a subclass of Number and ArrayList is a subclass
of List.)

Number[] a = new Integer[10];

ArrayList<int> list] = new ArrayList<int>(10);

List <Integer> list2 = new ArrayList<Integer>(10);
ArrayList<Number> list3 = new ArrayList<Integer>(10);
ArrayList<?> list4 = new ArrayList<Integer>(10);

ArrayList<? extends Number> list5 = new ArrayList<Integer>(10);
ArrayList list6 = new ArrayList<Integer>(10);

@ me e o
ooooooo

ETHZ D-INFK
Prof. Dr. B. Meyer Java and C# in Depth — Exam

2 Inheritance, polymorphism, dynamic binding:
a comparison between C# and Java (15 Points)

Tllustrate and compare the characteristics of inheritance, polymorphism, and
dynamic binding in Java and C#, specifying differences and common features.
The presentation should be concise, clear and self contained. You can assume
a general knowledge of object-oriented concepts. You are welcome to include a
few clear examples.

ETHZ D-INFK
Prof. Dr. B. Meyer Java and C# in Depth — Exam

© 00 O Ut WN -

© 00 O U WN -~

e el e el el
© 00O Uk WN O

3 Java Persistence (17 Points)

Consider the evolution of a simple class BankAccount, and the corresponding
management of its stored instances.

1. The following method Main.main creates a BankAccount object, performs
some operations on it, prints some information on the console, and finally
serializes the object previously created.

In comment (—1-), provide the console output produced after executing
line 9.

//Used with class BankAccount version 1 only
public class Main

{
public static void main(String [] args) throws Exception
{
BankAccount ba = new BankAccount(”001”);
ba.deposit (new BigDecimal(”?1.50”));
ba.withdraw (new BigDecimal(73”));
System.out. println (ba);
A
MySerializer s = new MySerializer ();
s.serialize (ba);
}
}
public class MySerializer
{
public void serialize (Serializable target) throws Exception{
OutputStream os =
new FileOutputStream (” exam-_ser_test.txt”);
ObjectOutput oo = new ObjectOutputStream (os);
oo.writeObject (target);
o0o.close ();
}
public Object deserialize () throws Exception {
InputStream is =
new FilelnputStream (” exam_ser_test.txt”);
ObjectInput oi = new ObjectInputStream (is);
Object obj = oi.readObject ();
oi.close ();
return obj;
}
}

0O~ Utk WN

ETHZ D-INFK
Prof. Dr. B. Meyer Java and C# in Depth — Exam

public class BankAccount implements Serializable //Version 1

{

private static final long serialVersionUID = 1L;
private String code;

private BigDecimal total_withdrawals;

private BigDecimal total_deposits;

private transient String lastOperation;

public BankAccount(String custCode) {
setCode (custCode);
total_deposits = BigDecimal .ONE;
total_withdrawals = BigDecimal .ZERO;
setLastOperation (” creation”);

}

public void setCode(String code) {
this.code = code;
setLastOperation (”set code”);

}

public BigDecimal getBalance() {
setLastOperation (”view balance”);
return new BigDecimal (
total_deposits.subtract(total_withdrawals)
.toString ());

public void deposit(BigDecimal amount) {
total_deposits = total_deposits.add(amount);
setLastOperation (” deposit”);

public void withdraw (BigDecimal amount) {
total_withdrawals = total_withdrawals.add(amount);
setLastOperation (” withdraw”);

public String toString () {
return ”Account: ” + code + ” .Balance: 7 +
getBalance (). toString () +
?. Last op.: ” 4+ lastOperation;

public void setLastOperation(String lastOperation) {
this.lastOperation = lastOperation;

10

© 00 O Ut WN -

2. The following method Main2.main retrieves the object previously stored.

In comment (—2-), provide the console output produced when the ex-
ecution (on the object serialized by method Mainl.main) reaches line 7,
assuming the same version 1 of class BankAccount is available to Main2.main

public class Main2

public static void main(String [] args) throws Exception

{

MySerializer s = new MySerializer ();
BankAccount ba2 = (BankAccount)(s.deserialize ());
System.out. println (ba2);

S B
Y
S B

3. Consider now re-executing the same method Main2.main with a new version
2 of class BankAccount, shown in the following page.
In comment (-3-), provide the console output produced when the exe-
cution (on the object serialized by method Mainl.main with version 1 of
BankAccount) reaches line 7, assuming version 2 of class BankAccount is
available to Main2.main.

4. In comment (—4-) in the following page, implement a method readObject()
of class BankAccount that helps to correctly retrieve a BankAccount object
previously stored in version 1 into a BankAccount object based on version
2. ”Correctly” means that no exception is raised and all attributes are
initialized to their correct values.

5. Consider now one more execution of method Main2.main.
In comment (-5-), provide the console output produced when the ex-
ecution (on the object serialized by method Mainl.main with version 1 of
BankAccount) reaches line 7, assuming version 2 of class BankAccount is avail-
able to Main2.main, including your implementation of method readObject().

Hints: The following API of class ObjectInputStream will be useful:

e The abstract static nested class ObjectInputStream.GetField of class
ObjectInputStream provides access to the persistent fields read from the
input stream.

e The method abstract Object get(String name, Object val) of the nested class
ObjectInputStream.GetField gets the value of the field referenced by name
from the stream. Argument val is the default value to use if the field
referenced by name does not have a value.

e The method ObjectInputStream.GetField readFields() of class ObjectInputStream
reads the persistent fields from the stream and makes them available by
name.

11

0O~ Utk WN

ETHZ D-INFK

Prof. Dr. B. Meyer

public class BankAccount implements Serializable //Version 2

{

private
private
private
private

public

public

public

public

public

public

public

static final long serialVersionUID = 1L;
String code;

transient String lastOperation;
BigDecimal balance;

BankAccount (String custCode) {
setCode (custCode);

balance = BigDecimal .ONE;
setLastOperation (” creation”);

BigDecimal getBalance () {
setLastOperation (” view balance”);
return balance;

void setCode(String code) {
this.code = code;
setLastOperation (”set code”);

void deposit (BigDecimal amount) {
balance = balance.add (amount);
setLastOperation (”deposit”);

void withdraw (BigDecimal amount) {
balance = balance.subtract (amount);
setLastOperation (” withdraw”);

String toString () {

return ” Account: ” 4+ code + ” .Balance:
getBalance (). toString () +

”?. Last op.: ” 4+ lastOperation;

” +

void setLastOperation(String lastOperation) {
this.lastOperation = lastOperation;

12

Java and C# in Depth — Exam

0O~ O Ui W

WWNNDNDNDNDDNDNDDNNDN R =
H O OO U R WNFEF OO URE W~ OO

public class BankAccount implements Serializable {
//Version 2, continued

private void readObject (ObjectInputStream ois)
throws IOException, ClassNotFoundException {

13

ETHZ D-INFK
Prof. Dr. B. Meyer Java and C# in Depth — Exam

4 C# Threads (15 Points)

Suppose you are writing a C# program that simulates some physical process
and visualizes the results.

A class Model encapsulates the functionalities related to simulation, whereas
another class Viewer is for the visualization tasks. The interface of Model con-
sists of method int NextValue(), which performs a simulation step and returns
the resulting value (of type int) of the observed quantity. The interface of
Viewer consists of method void Display(int value), which includes a new value to
the graphical representation of the process under simulation. Assume that both
methods require significant CPU time to execute.

Class MainProgram uses Model and Viewer to perform a specified number of sim-
ulation steps. On each step the new value of the quantity of interest is calculated
using NextValue and then visualized using Display. Your initial implementation
calls these two methods sequentially (see MainProgram. ExecuteSequentially), but
you are not satisfied with the performance. You speculate that on your two-
core machine you could get some speedup if you let NextValue start executing
the next simulation step while Display is still processing the previous value (you
implement this behavior in MainProgram.ExecuteConcurrently).

Moreover, the Main method should compare execution times of the sequential
and concurrent versions to check that some speedup is achieved.

Your task
Fill in the blanks in the following code templates so that:

e ExecuteConcurrently executes methods CalculateAll and DisplayAll in different
threads.

e ExecuteConcurrently displays the same results as ExecuteSequentially.

o Method Main indeed measures the execution times of the two variants
(sequential and concurrent).

For simplicity, our implementation of NextValue and Display does not perform
any actual computation, but just lets some time elapse.

Note that the number of simulation steps numSteps is unspecified and could
be arbitrarily large. Correspondingly, your implementation should not store a
collection of all previous simulation results.

You may add methods and/or attributes to the class MainProgram as appro-
priate.

14

class Model {
private int value = 0;

public int NextValue() {
// Let some time elapse:

value++;
return value;

}

class Viewer {
public void Display(int value) {
// Let some time elapse:

Console. WriteLine (value);

}

class MainProgram {
static Model model;
static Viewer viewer;
static int numSteps = // unspecified constant
static void ExecuteSequentially () {
model = new Model ();
viewer = new Viewer ();
for (int i = 0; i < numSteps; i++) {
viewer . Display (model. NextValue ());

static void CalculateAll() {
for (int i = 0; i < numSteps; i++) {

ETHZ D-INFK
Prof. Dr. B. Meyer Java and C# in Depth — Exam

}

static void DisplayAll() {
for (int i = 0; i < numSteps; i++) {

static void ExecuteConcurrently () {
model = new Model ();
viewer = new Viewer ();

static void Main(string[] args) {
DateTime start;
TimeSpan span;

start = DateTime.Now;
ExecuteSequentially ();
span = DateTime.Now — start;

Console. WriteLine (span. TotalMilliseconds);

start = DateTime.Now;

ExecuteConcurrently ();

span = DateTime.Now — start;

Console. WriteLine (span. TotalMilliseconds);

16

5 Methods as Objects in C# and Java (10 Points)

Sometimes we might want to use methods as objects, e.g. to pass them as
arguments to other methods, as illustrated by the example in Figure [I]

In Figure [I} method quickSortCData sorts an array of CData objects (its first
argument). To allow for different sorting criteria (e.g., descending order of
attribute ID or alphabetical order of attribute name) quickSortCData takes a second
argument sorter, from which the ordering of any two CData objects could be
queried when necessary.

In the example, class CData has in particular the attributes ID, of type int,
and name, of type String; both classes OrderInAlphName and OrderInDescID have
a method is_lessthan providing the ordering of two CData objects according to
their name and 1D, respectively; method sortCDataInOrder relies on quickSortCData
to sort.

void quickSortCData (CData([] list, SortingCriterion sorter)
// Class: CDataSorter. Sort the list.

// ! Type of the second argument to be declared.

N —
N ~ —
N

void sortCDatalnOrder (...) boolean is_less_than (CData o1, CData 02)
// Class: SomeClientClass. // Class: OrderlMlphName. Sort in alphabetical order of name.
—— &

Possible method call depending

on the actual parameter boolean is_less_than (CData 01, CData 02)

// Class: OrderinDesclD. Sort in descending order of ID.

—>
Normal method call
Figure 1: An example of passing methods as arguments.

For each of the following points, provide solutions both in Java and in C#.
In the C# solution you have to use delegates.

1. Provide a declaration for the type SortingCriterion, i.e. the type of the sec-
ond parameter of quickSortCData;

17

ETHZ D-INFK
Prof. Dr. B. Meyer Java and C# in Depth — Exam

2. Describe the relationship among types SortingCriterion, OrderInAlphName,
and OrderInDesclD;

3. Assume that we have an array of CData named dataArray, and that we
want to sort the objects in dataArray in descending order of ID. Provide
an example of call to quickSortCData which achieves this result. Make
sure to properly initialize the parameter sorter before the actual call to
quickSortCData.

18

	C# and Java Fundamentals (16 Points)
	Inheritance, polymorphism, dynamic binding: a comparison between C# and Java (15 Points)
	Java Persistence (17 Points)
	C# Threads (15 Points)
	Methods as Objects in C# and Java (10 Points)

