
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 1: Overview

2

Practical Details

•  Schedule
•  Tuesday 10-12, RZ F21: course
•  Wednesday 14-15, RZ F21: exercise
•  Wednesday 15-17, RZ F21: seminar

•  Course page
•  http://se.inf.ethz.ch/courses/2013a_spring/ccc/

•  Lecturers
•  Prof. Dr. Bertrand Meyer
•  Dr. Sebastian Nanz

•  Assistants
•  Benjamin Morandi
•  Andrey Rusakov
•  Mischael Schill
•  Scott West

firstname.lastname@inf.ethz.ch

3

Grading

Exam: 50%
Ø  End of semester (not in the semester break)
Ø  Date: 28 May 2013 at the usual lecture time

Project: 35% (build a small concurrent system)

Seminar talk: 15%

This is a challenging course; the project will be demanding.
Hence the 7 credit points. Do not take the course unless
you are prepared to devote significant effort to it.

4

Seminar

•  The seminar connects the course topics to the most
recent research results

•  The seminar consists of student presentations (20 min +
questions) on a research paper on concurrency

•  The seminar lives from discussions about the papers:
prepare questions about the papers to be presented

•  Attendance:
•  There will be an attendance sheet
•  You may be absent at most twice

5

Seminar grading

•  Content:
•  technical correctness
•  coherent development of concepts
•  selection of content
•  visualization of content
•  own contributions (such as own examples, own

evaluation, tracing of the paper’s impact)
•  Presentation:

•  slides (style, grammar, spelling)
•  use of other aids
•  voice & speech
•  audience engagement/stage presence
•  timing/pace

6

Paper selection for the seminar

•  You will get an email today, with a list of papers and
instructions for e-mailing us your choice

•  You must respond no later than Friday, 22 February,
12:00

•  If you don’t get the email today or miss the deadline,
please email the assistants

•  In tomorrow’s seminar, 20 February, 15:15 there will be
a talk on “How to give a technical presentation”

•  No exercise class tomorrow, 20 February (use the time
for paper selection)

7

Purpose of the course

Ø  To give you a practical grasp of the excitement and
difficulties of building modern concurrent applications

Ø  To expose you to newer forms of concurrency
Ø  To introduce you to the main concurrency approaches and

give you an idea of their strength and weaknesses
Ø  To present some of the concurrency calculi
Ø  To study one particular approach in depth: SCOOP
Ø  To enable you to get a concrete grasp of the issues and

solutions through a course project
Ø  To connect to recent research through a seminar

8

Course overview

Introduction
Concurrent and parallel programming, Multitasking and multiprocessing,
Shared-memory and distributed-memory multiprocessing, Notion of
process and thread, Performance of concurrent systems

Approaches to concurrent programming
Issues (data races, deadlock, starvation), Synchronization algorithms,
Semaphores, Monitors, Java and .NET multithreading

The SCOOP model
Processors, Synchronous and asynchronous feature calls, Separate
objects and entities, Synchronization, Examples and applications

Programming approaches to concurrency
Message-passing vs. shared-memory communication, Language examples
(Ada, Polyphonic C#, Erlang (Actors), X10, Linda, Cilk and others), Lock-
free programming, Software Transactional Memory

Reasoning about concurrent programs
Properties of concurrent programs, Temporal logic, Process calculi (CSP,
CCS), Proofs of concurrent programs

Chair of Software Engineering

Concurrency:
benefits and challenges

10

Why concurrency?

Concurrency is not a new topic but one most programmers
have been able to avoid
Previously perceived as a very specialized topic: high-
performance computing, systems programming, databases
Reasons for introducing concurrency into programs:

Ø  Efficiency
•  Time (load sharing)
•  Cost (resource sharing)

Ø  Availability
•  Multiple access

Ø  Convenience
•  Perform several tasks at once

Ø  Modeling power
•  Describing systems that are inherently parallel

11

Modeling a concurrent world

Computer systems are used for modeling objects in the
real world

Ø  Object-oriented programming

The world often includes parallel operation

Typical example:

Ø  Limited number of seats on the same plane
Ø  Several booking agents active at the same time

12

Multiprocessing, parallelism

Many of today’s computations can take advantage of
multiple processing units (through multi-core processors):

Terminology:
Ø  Multiprocessing : the use of more than one

processing unit in a system
Ø  Parallel execution: processes running at the same

time

Process 1 CPU 1

Process 2 CPU 2
Instructions

13

Multitasking, concurrency

Even on systems with a single processing unit we may give
the illusion of that several programs run at once
The OS switches between executing different tasks

Terminology:
Ø  Interleaving: several tasks active, only one running at a time
Ø  Multitasking: the OS runs interleaved executions
Ø  Concurrency: multiprocessing, multitasking, or any

combination

Process 1

CPU

Process 2

Instructions

14

The end of Moore‘s Law as we knew it

Clock speed

Transistor
density

Source: Intel

15

Why do we care?

•  The “end of Moore’s law as we knew it” has important
implications on the software construction process

•  Computing is taking an irreversible step toward parallel
architectures

•  Hardware construction of ever faster sequential
CPUs has hit physical limits

•  Clock speed no longer increases for every new
processor generation

•  Moore’s Law expresses itself as exponentially
increasing number of processing cores per chip

•  If we want programs to run faster on the next
processor generation, the software must exploit more
concurrency

16

Amdahl’s Law*

We go from 1 processor to n. What gain may we expect?

Amdahl’s law severely limits our hopes!

Define gain as:

Not everything can be parallelized!

Parallel part

Sequential part
Number of
processors

*3 slides adapted
from material by
Maurice Herlihy

1

1 - p + (p / n)
speedup =

old_execution_time
new_execution_time speedup =

% parallelizable

17

Amdahl’s law: Example (1)*

Assume 10 processing units. How close are we to a 10-fold
speedup?

Ø  60% concurrent, 40% sequential:

Ø  80% concurrent, 20% sequential:

1

1 – 0.6 + (0.6 / 10)
speedup = = 2.17

1

1 – 0.8 + (0.8 / 10)
speedup = = 3.57

18

Amdahl’s law: Example (2)*

Ø  90% concurrent, 10% sequential:

Ø  99% concurrent, 1% sequential:

1

1 – 0.9 + (0.9 / 10)
speedup = = 5.26

1

1 – 0.99 + (0.99 / 10)
speedup = = 9.17

19

Types of parallel computation

Flynn’s taxonomy: classification of computer architectures
Considers relationship of instruction streams to data streams:

Ø  SISD: No parallelism (uniprocessor)

Ø  SIMD: Vector processor, GPU

Ø  MIMD: Multiprocessing (predominant today)

Single Instruction Multiple Instruction
Single Data SISD

Multiple Data SIMD MIMD

20

MIMD variants

SPMD (Single Program Multiple Data):
Ø  All processors run same program,

but at independent speeds;
no lockstep as in SIMD

MPMD (Multiple Program Multiple Data):
Ø  Often manager/worker strategy:

manager distributes tasks,
workers return result to manager

21

Shared memory model

All processors share a common memory
Shared-memory communication

Processor1

Memory

Processor2 Processorn
. . .

22

Distributed memory model

Each processor has own local memory, inaccessible to others
Message passing communication
Common for SPMD architecture

Processor1

Memory1

Processor2

Memory2

Processorn

Memoryn

. . .

message passing

23

Client-server model

Specific case of the distributed model
Examples: Database-centered systems, World-Wide Web

Server

MemoryS

Client1

Memory1

Clientn

Memoryn

. . .

request

. . .

request

response response

24

SCOOP: the trailer

25

SCOOP mechanism

Simple Concurrent Object-Oriented Programming

Evolved through previous two decades; CACM (1993) and
chap. 32 of Object-Oriented Software Construction, 2nd
edition, 1997

Prototype-implementation at ETH in 2007

Implementation integrated within EiffelStudio in 2011 (by
Eiffel Software)

Current reference: ETH PhD Thesis by Piotr Nienaltowski,
2008; articles by Benjamin Morandi, Sebastian Nanz and
Bertrand Meyer, 2010-2011

26

SCOOP preview: a sequential program

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- If possible, transfer amount from source to target.
 do

 if source l balance >= amount then
 source l withdraw (amount)
 target l deposit (amount)

 end
 end

Typical calls:

 transfer (acc1, acc2, 100)
 transfer (acc1, acc3, 100)

27

In a concurrent setting, using SCOOP

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- If possible, transfer amount from source to target.
 do

 if source l balance >= amount then
 source l withdraw (amount)
 target l deposit (amount)

 end
 end

Typical calls:

 transfer (acc1, acc2, 100)
 transfer (acc1, acc3, 100)

separate

28

A better SCOOP version

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- Transfer amount from source to target.
 require

 source l balance >= amount
 do

 source l withdraw (amount)
 target l deposit (amount)

 ensure
 source l balance = old source l balance – amount
 target l balance = old targetl balance + amount

 end

separate

29

put (b : [G] ; v : G)
 -- Store v into b.
 require
 not b.is_full
 do
 …
 ensure
 not b.is_empty

 end

QUEUE BUFFER

my_queue : [T]
…

if not my_queue.is_full then

 put (my_queue, t)
end

BUFFER QUEUE

put

item, remove

30

Dining philosophers

class PHILOSOPHER inherit
 PROCESS
 rename
 setup as getup
 redefine step end

feature {BUTLER}

 step
 do
 think ; eat (left, right)

 end

 eat (l, r : separate FORK)
 -- Eat, having grabbed l and r.

 do … end
end

31

The issue

Concurrency everywhere:
Ø  Multithreading
Ø  Multitasking
Ø  Networking, Web services, Internet

Can we bring concurrent programming
to the same level

of abstraction and convenience
as sequential programming?

Ø Multicore

32

Previous advances in programming

“Structured
programming”

“Object
technology”

Use higher-level abstractions ü ü
Helps avoid bugs ü ü
Transfers tasks to implementation ü ü
Lets you do stuff you couldn’t before NO ü

Has well-understood math basis ü ü
Doesn’t require understanding that basis ü ü

Removes restrictions NO ü
Adds restrictions ü ü

Permits less operational reasoning ü ü

33

Then and now

Sequential programming:

Used to be messy

Still hard but key
improvements:

Ø  Structured
programming

Ø  Data abstraction &
object technology

Ø  Design by Contract
Ø  Genericity, multiple

inheritance
Ø  Architectural

techniques

Concurrent programming:

Used to be messy

Example: threading models in
most popular approaches

Development level: sixties/
seventies

Only understandable through
operational reasoning

Still messy

34

The chasm

Theoretical models, process calculi provide an elegant
theoretical basis, but

Ø  have little connection with practice (some
exceptions, e.g. BPEL)

Ø  handle concurrency aspects only

Practice of concurrent & multithreaded programming
Ø  Little influenced by above
Ø  Low-level, e.g. semaphores
Ø  Poorly connected with rest of programming model

