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Today's lecture 

In this lecture you will learn about: 
 
•  How to classify various approaches to concurrency in 

programming languages 
•  A number of message passing approaches to 

concurrency: Ada, Erlang (Actor model), Message 
passing interface (MPI), ... 

•  A number of shared memory approaches to concurrency: 
OpenMP, Linda (Coordination languages), Cilk, ... 
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Concurrent and parallel languages 

Developers today have the choice among a multitude of 
different approaches to concurrent and parallel programming 

Ada 

Axum 

Cilk 

Polyphonic C# 

Erlang 

Occam 

Scala 

SCOOP 

Linda 
X10 

Chapel Fortress 

Actors 

PGAS 

Message passing 

Shared memory 

MPI 

Pthreads 

OpenMP 

Language Library 

Java/C# threads 
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Asynchronous communication 

•  Asynchronous: the sender sends a message and 
continues, regardless of whether the message has been 
received 

•  Requires buffer space 
•  Analogy: Email 

Process P1 Process P2 

send 

receive 

message 
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Synchronous communication 

•  Synchronous: the sender blocks until the receiver is 
ready to receive the message 

•  Analogy: Phone call 

Process P1 Process P2 

send 

receive message 
blocked 
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Ada 

•  Object-oriented language, influenced by Pascal, 
developed from 1975 by US Department of Defence, 
standards: Ada83, Ada95, Ada 2005 

•  Design goals: highly reliable systems, reusable 
components, concurrency part of the language 

•  Named after Ada Lovelace (1815–1852), “the first 
computer programmer” 

•  Supports concurrent execution via tasks, which can have 
entries for synchronous message-passing communication 

•  Ada also offers shared memory synchronization via  
protected objects, a monitor-like mechanism where  
condition variables are replaced with guards 
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Ada Tasks 

•  Tasks are declared within procedures 
•  Two parts: task specification, task implementation 
•  Tasks are activated when the procedure starts 

executing 
procedure SimpleProc is 
    task type SimpleTask; 
 
    task body SimpleTask is 
    begin 
        ... 
    end SimpleTask; 
 
      taskA, taskB: SimpleTask; 
begin 
    null; 
end SimpleProc; 
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Process communication: Rendezvous (1) 

•  Uses synchronous communication, called the “rendezvous” 
•  Entry points (declared in the type declaration) specify the 

actions a task can synchronize on 

 

task type SimpleTask is 
    entry MyEntry; 
end SimpleTask; 
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Process communication: Rendezvous (2) 

•  accept-statements (within the task body) indicate 
program points where rendezvous can take place 

•  Clients invoke an entry point to initiate a rendezvous, 
and wait for the accepting task to reach a corresponding 
entry point 

•  Upon establishing a rendezvous, the client waits for the 
accepting task to execute the body of the rendezvous 
and resumes afterward 

task body SimpleTask is 
begin 
    ... 
    accept MyEntry do 
       -- body of rendezvous 
    end MyEntry; 
    ... 
end SimpleTask; 

declare 
    T: SimpleTask; 
begin 
    ... 
    T.MyEntry;  
      -- wait until T reaches MyEntry 
    ... 
end SimpleTask; 
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Process communication: Rendezvous (3) 

•  Entry points can have parameters to pass on values 

•  select-statement allows for waiting for multiple entries 
•  Within a select, alternatives may be guarded by boolean 

expressions 
•  Only if the guard evaluates to true the accept-

statement is permitted 

accept append(x : in integer) do 
    ... 
end append; 

buffer.append(item);   

select 
  when count < n =>  
    accept append(x : in integer) do 
        ... 
    end append; 
or 
  when ... 
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Example: Producer-Consumer problem in Ada 

task body Buffer is 
  count, in, out: integer := 0;  
   buff: array(0..n-1) of integer; 
begin 
    loop 
       select 
           when count < n =>  
              accept append(x : in integer) do 
                  buff(in) := x; 
              end append; 
           in := (in – 1) mod n; count := count + 1; 
       or 
           when count > 0 => 
              accept remove(y : out integer) do 
                  y := buff(out); 
              end remove; 
           out := (out + 1) mod n; count := count – 1; 
       end select; 
    end loop; 
end buffer; 
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Protected objects 

•  Monitor-like concept: 
•  All data private 
•  Exports only procedures, functions, and entries 

•  Functions may only read data, therefore multiple 
function calls may be active on the same object 

•  Procedures and entries may read and write data, and 
exclude other procedures and functions 

•  Invocation of entries with guards, similar to Hoare’s 
conditional critical regions 
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Conditional critical regions 

•  Conditional critical regions provide condition 
synchronization without condition variables  

•  If S is a critical region for variable x, then the following 
is a conditional critical region with guard B: 

region x when B do S 
•  If a process wants to enter a conditional critical 

region, it must obtain the mutex lock or is queued 
otherwise. 

•  When the lock is acquired, the boolean expression 
B is tested. If B evaluates to true, the process 
proceeds into the critical region. Otherwise it 
releases the lock and is queued. Upon re-
acquisition of the lock, the process must retest B. 
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Example: Protected objects 

protected type Semaphore is 
      entry Down; 
      procedure Up; 
      function Get_Count return Natural; 
   private 
      Count: Natural := 0; 
   end Semaphore; 
 
protected body Semaphore is 
      entry Down when Count > 0 is 
      begin 
         Count := Count - 1; 
      end Down; 

      procedure Up is 
      begin 
         Count := Count + 1; 
      end Up; 

      function Get_Count return Natural is 
      begin 
         return Count; 
      end Count; 
end Semaphore; 
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Ada: Discussion 

•  One of the first languages to introduce high-level 
concurrency constructs into the language 

•  Both message passing and shared memory concepts 
available: good to fit the approach to the problem at 
hand and performance requirements 

•  Ada is still actively developed 
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The Actor model 

•  A mathematical model of concurrent computation, 
introduced by (Hewitt, 1973) and refined by (Agha, 1985) 
and others 
•  Actor metaphor: "active agent which plays a role on cue 
according to a script" 
•  Process communication through asynchronous message 
passing 
•  No shared state between actors 
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Actor 

•  An actor is an entity which in response to a message it 
receives can 

•  send finitely many messages to other actors 
•  determine new behavior for messages it receives in 

the future 
•  create a finite set of new actors 

•  Communication via asynchronous message passing 
•  Recipients of messages are identified by addresses, 
hence an actor can only communicate with actors whose 
addresses it has 
•  A message consists of 

•  the target to whom the communication is addressed 
•  the content of the message 
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Erlang 

•  Erlang: functional language, developed by Ericsson since 
1986 
•  Erlang implements the Actor model 
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Erlang syntax for concurrency 

•  When processes (≈ actors) are created using spawn, they 
are given unique process identifiers (or PIDs) 
  PID = spawn(Module, Function, Arguments) 

•  Messages are sent by passing tuples to a PID with the ! 
syntax. 
PID ! {message}. 

•  Messages are retrieved from the mailbox using the 
receive() function with pattern matching 

 receive 
  Message1 -> Actions1 ; 
  Message2 -> Actions2 ; 
  ... 
 end 
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Example: A simple counter 

start() -> 
    spawn(counter, counter_loop, [0]). 
 
increment(Counter) -> 
    Counter ! inc. 
 
value(Counter) -> 
    Counter ! {self(),value}, 
    receive 
        {Counter,Value} -> Value 
    end. 
 

counter_loop(Val) -> 
    receive 
        inc -> 
            counter_loop(Val + 1); 
        {From,value} -> 
            From ! {self(),Val}, 
            counter_loop(Val); 
        Other -> 
            counter_loop(Val) 
end. 

 

Counter Interface 
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Actors: Discussion 

•  Influential model for asynchronous message passing 
•  Also implemented in various other languages, e.g. Scala 

and Axum (Microsoft) 
•  Success story: Ericsson AXD301 switch for 

telecommunication systems with very high reliability – 
more than one million lines of Erlang   
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Message Passing Interface (MPI) 

•  Message Passing Interface (MPI): API specification for 
process communication via messages, developed in 
1993-94 

•  For parallel programs on distributed memory systems 
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“Hello, World!“ in MPI 

•  Processes involved in an MPI execution are identified by 
ranks, i.e. integer numbers 0, 1, ..., numproc – 1 

•  In the following program, Process 0 gets and prints 
messages from all other processes 

MPI_Init(&argc,&argv); // Initialize MPI 
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // My identifier 
MPI_Comm_size(MPI_COMM_WORLD, &numproc);  // Total number of processes 
if (my_rank != 0) { 
    sprintf(message, "Greetings from process %d!”, my_rank); 
    dest = 0; 
    MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD); 
    } else { 
        for (source = 1; source < numproc; source++) { 
            MPI_Recv(message, sizeof(message), MPI_CHAR,  

 source, tag, MPI_COMM_WORLD, &status); 
            printf("%s\n", message); 
    } 
} 
MPI_Finalize();  // Shut down MPI 
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SPMD in MPI 

•  As seen in the previous program, the most common 
paradigm used in MPI is SPMD 

•  Within each process, we take branches based on its rank 
•  At startup, processes are mapped to processors by the 

MPI runtime 
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MPI: Discussion 

•  Dominant model used in high-performance computing 
•  Good portability: implemented for many distributed 

memory architectures 
•  Available as library in many languages, in particular 

Fortran, C, C++ 
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Polyphonic C# 

•  Polyphonic C# is an extension of C# with a few high-level 
primitives for concurrency, appeared in 2004 

•  Based on join calculus (Fournet & Gonthier, 1996) 
•  Taken up by Microsoft’s Cω project 
•  JoinJava is a similar extension for Java 

•  Based on two basic notions 
•  Asynchronous methods 
•  Chords 

 (M. Mussorgsky, Pictures at an exhibition) 
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Asynchronous methods 

•  Calls to asynchronous methods return immediately 
without returning any result: 

•  The callee is scheduled for execution in a different 
thread 

•  Similar to sending a message or raising an event 
•  Declared using async keyword instead of void 
 
public async startComputation () { 

 // computation 
} 
 

•  Aynchronous methods do not return any value 
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Chords: syntax 

A chord extends the notion of a method definition: 
•  The signature of a chord is a collection of 

(traditional) method declarations joined by & 
•  The body of a chord is all similar to the body of a 

traditional method 

  public String get() & public async put(String i) { 
  return i; 

  } 
 

•  Within a chord at most one method can be non-async 
•  Within a class the same method can appear in more 

than one chord 
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Chords: semantics 

•  A chord is only executed once all the methods in its 
signature have been called: 

•  Calls are buffered until there is a matching chord 
•  the implicit buffer supports complex 

synchronization patterns with little code (see 
Producer/Consumer later) 

•  If multiple matches are possible, nondeterminism 
applies 

•  Execution returns a value to the only non-
asynchronous method in the chord (if any) 
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Chords semantics: example 

public class Buffer() { 
 public String get() & public async put(String i) { 
  return i;  
 } 

} 
... 
Buffer b = new Buffer(); 
b.put(“A”) 
Console.WriteLine(b.get());   // prints “A” 
b.put(“A”); b.put(“B”); 
Console.WriteLine(b.get() + b.get()); // prints “AB” 
b.get(); // blocks until some other thread calls put 

 



45 

Polyphonic C#: Discussion 

•  Combination of two ideas: asynchronous methods and 
chords 

•  Asynchronous methods also appear in earlier languages 
such as Cilk 

•  Chords: novel idea for message passing communication 
among more than two threads 

•  Cω project is discontinued 
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OpenMP 

•  OpenMP (Open Multi-Processing) API for shared 
memory multithreaded programming, appeared in 1997 

•  Using preprocessor directives (pragmas) to mark parallel 
code, may be ignored by other compilers 

 #pragma omp construct [clause [clause]…] 
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Programming model 

•  Fork-join parallelism:  
•  Master thread spawns a team of threads as 

needed 
•  Parallelism is added incrementally: that is, the 

sequential program evolves into a parallel program 

Parallel Regions 

Master 
Thread 
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Work sharing: data parallelism 

•  parallel construct forks additional 
threads 

•  for and do constructs distribute 
loop iterations within the threads 
that encounter the construct 

// assume N = 100000 
#pragma omp parallel 
{ 
  #pragma omp for  
   { 
       for(i = 0, i < N, i++)  
          c[i] = a[i] + b[i]; 
   } 
} 

#pragma omp parallel 

#pragma omp for 

Implicit barrier 

i = 1 

i = 2 

i = 3 

i = 4 

i = 5 

i = 6 

i = 7 

i = 8 

i = 9 

i = 10 

i = 11 

i = 12 
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Work sharing: task parallelism 

•  The sections construct can be used 
to compute tasks in parallel  

#pragma omp parallel sections 
{    
#pragma omp section  /* Optional */ 
   a = taskA(); 
#pragma omp section 
   b = taskB(); 
#pragma omp section 
   c = taskC(); 
} 
 
x = combine(a, b); 
y = combine(x, c); 
 

A B 

X 

Y 

C   

Serial Parallel 
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OpenMP clauses 

•  OpenMP constructs can be further refined by clauses 
•  private: make variables local to each thread (shared by 

default) 
•  critical section: the enclosed block is executed by at 

most one thread at a time 
•  schedule(type, chunk): define the type of scheduling 

used for work sharing 
•  type static: divide work equally between threads 

(each gets chunk iterations) 
•  type dynamic: threads may request more 

iterations when finished (for load balancing) 
•  type guided: chunk size decreases exponentially, 

but won’t be smaller than chunk 
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OpenMP: Discussion 

•  Library approach, no language integration 
•  Implemented for C, C++, Fortran, available on many 

platforms 
•  Supports incremental development of parallel programs, 

starting with a sequential one 
•  Some support for load balancing 
 



Chair of Software Engineering 

Coordination Languages: Linda 



55 

Linda 

•  Coordination languages are based on the assumption that 
a concurrent programming language has two parts: 

•  A computation language, in which single-threaded 
execution is defined 

•  A coordination language, for creation of 
computations and process communication 

•  The coordination features are based on the idea of a 
tuple space, which holds data tuples that can be stored 
and retrieved by the processes 

•  Linda is the original coordination language, appeared 
around 1985 
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Tuple spaces 

•  A tuple space is a collection of tuples such as 
 {(“test”, 11, true), (“test”, 3, false), (“b”, 23), ... } 

•  Tuple spaces can be read and modified via the following 
operations: 

•  out(a1, ..., an)  write tuple  
•  in(a1, ..., an)  read and remove matching tuple 
•  read(a1, ..., an)  read matching tuple 
•  eval(P)   start a new process P 

•  Pattern matching for in and read:  
•  (a1, ..., an) can contain both actual and formal 

parameters 
•  If no matching tuple is found, the operation 

blocks 
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Example: Tuple spaces 

•  Assume we have the following tuple space: 
 {(“test”, 11, true), (“test”, 3, false), (“b”, 23)} 

•  Operations: 
•  in(“a”, x)  blocks, no matching tuple 
•  in(“test”, x, b)   removes tuple (“test”, 11, true) 

and binds 11 to x and true to b (could have also 
selected tuple (“test”, 3, false)) 

•  read(“test”, x, b)  reads tuple (“test”, 3, false) 
•  out(“a”, 14)  puts (“a”, 14) into the tuple space 
•  The last action unblocks in(“a”, x), which will 

remove the inserted tuple 
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Simulating semaphores in Linda 

•  Semaphores can be implemented in Linda 
•  Initilization: tuple space with k tuples (“token”) 
•  Implement down with in(“token”) 
•  Implement up with out(“token”) 

•  Solution to the mutual exclusion problem: 

while true do 
    in(“token”) 
    critical section 
    out(“token”) 
    non-critical section 
end 
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Linda: Discussion 

•  Communicating processes in Linda are only loosely 
coupled, processes need not know about other processes 

•  The coordination language is completely orthogonal to 
computation 

•  Distribution of processes is easy 
•  Potentially processes written in different 

languages can cooperate 
•  Implementations of Linda can be found in several 

languages such as Java (JavaSpaces) and C 


