
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz	

Lecture 13: Languages for Concurrency & Parallelism

2

Today's lecture

In this lecture you will learn about:

•  How to classify various approaches to concurrency in

programming languages
•  A number of message passing approaches to

concurrency: Ada, Erlang (Actor model), Message
passing interface (MPI), ...

•  A number of shared memory approaches to concurrency:
OpenMP, Linda (Coordination languages), Cilk, ...

Chair of Software Engineering

Classification

10

Concurrent and parallel languages

Developers today have the choice among a multitude of
different approaches to concurrent and parallel programming

Ada

Axum

Cilk

Polyphonic C#

Erlang

Occam

Scala

SCOOP

Linda
X10

Chapel Fortress

Actors

PGAS

Message passing

Shared memory

MPI

Pthreads

OpenMP

Language Library

Java/C# threads

Chair of Software Engineering

Message passing approaches

12

Asynchronous communication

•  Asynchronous: the sender sends a message and
continues, regardless of whether the message has been
received

•  Requires buffer space
•  Analogy: Email

Process P1 Process P2

send

receive

message

13

Synchronous communication

•  Synchronous: the sender blocks until the receiver is
ready to receive the message

•  Analogy: Phone call

Process P1 Process P2

send

receive message
blocked

Chair of Software Engineering

Ada

15

Ada

•  Object-oriented language, influenced by Pascal,
developed from 1975 by US Department of Defence,
standards: Ada83, Ada95, Ada 2005

•  Design goals: highly reliable systems, reusable
components, concurrency part of the language

•  Named after Ada Lovelace (1815–1852), “the first
computer programmer”

•  Supports concurrent execution via tasks, which can have
entries for synchronous message-passing communication

•  Ada also offers shared memory synchronization via
protected objects, a monitor-like mechanism where
condition variables are replaced with guards

16

Ada Tasks

•  Tasks are declared within procedures
•  Two parts: task specification, task implementation
•  Tasks are activated when the procedure starts

executing
procedure SimpleProc is
 task type SimpleTask;

 task body SimpleTask is
 begin
 ...
 end SimpleTask;

 taskA, taskB: SimpleTask;
begin
 null;
end SimpleProc;

17

Process communication: Rendezvous (1)

•  Uses synchronous communication, called the “rendezvous”
•  Entry points (declared in the type declaration) specify the

actions a task can synchronize on

task type SimpleTask is
 entry MyEntry;
end SimpleTask;

18

Process communication: Rendezvous (2)

•  accept-statements (within the task body) indicate
program points where rendezvous can take place

•  Clients invoke an entry point to initiate a rendezvous,
and wait for the accepting task to reach a corresponding
entry point

•  Upon establishing a rendezvous, the client waits for the
accepting task to execute the body of the rendezvous
and resumes afterward

task body SimpleTask is
begin
 ...
 accept MyEntry do
 -- body of rendezvous
 end MyEntry;
 ...
end SimpleTask;

declare
 T: SimpleTask;
begin
 ...
 T.MyEntry;
 -- wait until T reaches MyEntry
 ...
end SimpleTask;

19

Process communication: Rendezvous (3)

•  Entry points can have parameters to pass on values

•  select-statement allows for waiting for multiple entries
•  Within a select, alternatives may be guarded by boolean

expressions
•  Only if the guard evaluates to true the accept-

statement is permitted

accept append(x : in integer) do
 ...
end append;

buffer.append(item);

select
 when count < n =>
 accept append(x : in integer) do
 ...
 end append;
or
 when ...

20

Example: Producer-Consumer problem in Ada

task body Buffer is
 count, in, out: integer := 0;
 buff: array(0..n-1) of integer;
begin
 loop
 select
 when count < n =>
 accept append(x : in integer) do
 buff(in) := x;
 end append;
 in := (in – 1) mod n; count := count + 1;
 or
 when count > 0 =>
 accept remove(y : out integer) do
 y := buff(out);
 end remove;
 out := (out + 1) mod n; count := count – 1;
 end select;
 end loop;
end buffer;

21

Protected objects

•  Monitor-like concept:
•  All data private
•  Exports only procedures, functions, and entries

•  Functions may only read data, therefore multiple
function calls may be active on the same object

•  Procedures and entries may read and write data, and
exclude other procedures and functions

•  Invocation of entries with guards, similar to Hoare’s
conditional critical regions

22

Conditional critical regions

•  Conditional critical regions provide condition
synchronization without condition variables

•  If S is a critical region for variable x, then the following
is a conditional critical region with guard B:

region x when B do S
•  If a process wants to enter a conditional critical

region, it must obtain the mutex lock or is queued
otherwise.

•  When the lock is acquired, the boolean expression
B is tested. If B evaluates to true, the process
proceeds into the critical region. Otherwise it
releases the lock and is queued. Upon re-
acquisition of the lock, the process must retest B.

23

Example: Protected objects

protected type Semaphore is
 entry Down;
 procedure Up;
 function Get_Count return Natural;
 private
 Count: Natural := 0;
 end Semaphore;

protected body Semaphore is
 entry Down when Count > 0 is
 begin
 Count := Count - 1;
 end Down;

 procedure Up is
 begin
 Count := Count + 1;
 end Up;

 function Get_Count return Natural is
 begin
 return Count;
 end Count;
end Semaphore;

24

Ada: Discussion

•  One of the first languages to introduce high-level
concurrency constructs into the language

•  Both message passing and shared memory concepts
available: good to fit the approach to the problem at
hand and performance requirements

•  Ada is still actively developed

Chair of Software Engineering

The Actor model: Erlang

26

The Actor model

•  A mathematical model of concurrent computation,
introduced by (Hewitt, 1973) and refined by (Agha, 1985)
and others
•  Actor metaphor: "active agent which plays a role on cue
according to a script"
•  Process communication through asynchronous message
passing
•  No shared state between actors

27

Actor

•  An actor is an entity which in response to a message it
receives can

•  send finitely many messages to other actors
•  determine new behavior for messages it receives in

the future
•  create a finite set of new actors

•  Communication via asynchronous message passing
•  Recipients of messages are identified by addresses,
hence an actor can only communicate with actors whose
addresses it has
•  A message consists of

•  the target to whom the communication is addressed
•  the content of the message

28

Erlang

•  Erlang: functional language, developed by Ericsson since
1986
•  Erlang implements the Actor model

29

Erlang syntax for concurrency

•  When processes (≈ actors) are created using spawn, they
are given unique process identifiers (or PIDs)
 PID = spawn(Module, Function, Arguments)

•  Messages are sent by passing tuples to a PID with the !
syntax.
PID ! {message}.

•  Messages are retrieved from the mailbox using the
receive() function with pattern matching

 receive
 Message1 -> Actions1 ;
 Message2 -> Actions2 ;
 ...
 end

30

Example: A simple counter

start() ->
 spawn(counter, counter_loop, [0]).

increment(Counter) ->
 Counter ! inc.

value(Counter) ->
 Counter ! {self(),value},
 receive
 {Counter,Value} -> Value
 end.

counter_loop(Val) ->
 receive
 inc ->
 counter_loop(Val + 1);
 {From,value} ->
 From ! {self(),Val},
 counter_loop(Val);
 Other ->
 counter_loop(Val)
end.

Counter Interface

31

Actors: Discussion

•  Influential model for asynchronous message passing
•  Also implemented in various other languages, e.g. Scala

and Axum (Microsoft)
•  Success story: Ericsson AXD301 switch for

telecommunication systems with very high reliability –
more than one million lines of Erlang

Chair of Software Engineering

Message Passing Interface (MPI)

33

Message Passing Interface (MPI)

•  Message Passing Interface (MPI): API specification for
process communication via messages, developed in
1993-94

•  For parallel programs on distributed memory systems

34

“Hello, World!“ in MPI

•  Processes involved in an MPI execution are identified by
ranks, i.e. integer numbers 0, 1, ..., numproc – 1

•  In the following program, Process 0 gets and prints
messages from all other processes

MPI_Init(&argc,&argv); // Initialize MPI
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank); // My identifier
MPI_Comm_size(MPI_COMM_WORLD, &numproc); // Total number of processes
if (my_rank != 0) {
 sprintf(message, "Greetings from process %d!”, my_rank);
 dest = 0;
 MPI_Send(message, strlen(message)+1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 } else {
 for (source = 1; source < numproc; source++) {
 MPI_Recv(message, sizeof(message), MPI_CHAR,

 source, tag, MPI_COMM_WORLD, &status);
 printf("%s\n", message);
 }
}
MPI_Finalize(); // Shut down MPI

35

SPMD in MPI

•  As seen in the previous program, the most common
paradigm used in MPI is SPMD

•  Within each process, we take branches based on its rank
•  At startup, processes are mapped to processors by the

MPI runtime

36

MPI: Discussion

•  Dominant model used in high-performance computing
•  Good portability: implemented for many distributed

memory architectures
•  Available as library in many languages, in particular

Fortran, C, C++

Chair of Software Engineering

Polyphonic C#

(Based on slides by C.A. Furia)

38

Polyphonic C#

•  Polyphonic C# is an extension of C# with a few high-level
primitives for concurrency, appeared in 2004

•  Based on join calculus (Fournet & Gonthier, 1996)
•  Taken up by Microsoft’s Cω project
•  JoinJava is a similar extension for Java

•  Based on two basic notions
•  Asynchronous methods
•  Chords

 (M. Mussorgsky, Pictures at an exhibition)

39

Asynchronous methods

•  Calls to asynchronous methods return immediately
without returning any result:

•  The callee is scheduled for execution in a different
thread

•  Similar to sending a message or raising an event
•  Declared using async keyword instead of void

public async startComputation () {

 // computation
}

•  Aynchronous methods do not return any value

40

Chords: syntax

A chord extends the notion of a method definition:
•  The signature of a chord is a collection of

(traditional) method declarations joined by &
•  The body of a chord is all similar to the body of a

traditional method

 public String get() & public async put(String i) {
 return i;

 }

•  Within a chord at most one method can be non-async
•  Within a class the same method can appear in more

than one chord

41

Chords: semantics

•  A chord is only executed once all the methods in its
signature have been called:

•  Calls are buffered until there is a matching chord
•  the implicit buffer supports complex

synchronization patterns with little code (see
Producer/Consumer later)

•  If multiple matches are possible, nondeterminism
applies

•  Execution returns a value to the only non-
asynchronous method in the chord (if any)

42

Chords semantics: example

public class Buffer() {
 public String get() & public async put(String i) {
 return i;
 }

}
...
Buffer b = new Buffer();
b.put(“A”)
Console.WriteLine(b.get()); // prints “A”
b.put(“A”); b.put(“B”);
Console.WriteLine(b.get() + b.get()); // prints “AB”
b.get(); // blocks until some other thread calls put

45

Polyphonic C#: Discussion

•  Combination of two ideas: asynchronous methods and
chords

•  Asynchronous methods also appear in earlier languages
such as Cilk

•  Chords: novel idea for message passing communication
among more than two threads

•  Cω project is discontinued

Chair of Software Engineering

Shared Memory Approaches

Chair of Software Engineering

OpenMP

(Some slides adapted from Intel teaching material)

48

OpenMP

•  OpenMP (Open Multi-Processing) API for shared
memory multithreaded programming, appeared in 1997

•  Using preprocessor directives (pragmas) to mark parallel
code, may be ignored by other compilers

 #pragma omp construct [clause [clause]…]

49

Programming model

•  Fork-join parallelism:
•  Master thread spawns a team of threads as

needed
•  Parallelism is added incrementally: that is, the

sequential program evolves into a parallel program

Parallel Regions

Master
Thread

50

Work sharing: data parallelism

•  parallel construct forks additional
threads

•  for and do constructs distribute
loop iterations within the threads
that encounter the construct

// assume N = 100000
#pragma omp parallel
{
 #pragma omp for
 {
 for(i = 0, i < N, i++)
 c[i] = a[i] + b[i];
 }
}

#pragma omp parallel

#pragma omp for

Implicit barrier

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

i = 9

i = 10

i = 11

i = 12

51

Work sharing: task parallelism

•  The sections construct can be used
to compute tasks in parallel

#pragma omp parallel sections
{
#pragma omp section /* Optional */
 a = taskA();
#pragma omp section
 b = taskB();
#pragma omp section
 c = taskC();
}

x = combine(a, b);
y = combine(x, c);

A B

X

Y

C

Serial Parallel

52

OpenMP clauses

•  OpenMP constructs can be further refined by clauses
•  private: make variables local to each thread (shared by

default)
•  critical section: the enclosed block is executed by at

most one thread at a time
•  schedule(type, chunk): define the type of scheduling

used for work sharing
•  type static: divide work equally between threads

(each gets chunk iterations)
•  type dynamic: threads may request more

iterations when finished (for load balancing)
•  type guided: chunk size decreases exponentially,

but won’t be smaller than chunk

53

OpenMP: Discussion

•  Library approach, no language integration
•  Implemented for C, C++, Fortran, available on many

platforms
•  Supports incremental development of parallel programs,

starting with a sequential one
•  Some support for load balancing

Chair of Software Engineering

Coordination Languages: Linda

55

Linda

•  Coordination languages are based on the assumption that
a concurrent programming language has two parts:

•  A computation language, in which single-threaded
execution is defined

•  A coordination language, for creation of
computations and process communication

•  The coordination features are based on the idea of a
tuple space, which holds data tuples that can be stored
and retrieved by the processes

•  Linda is the original coordination language, appeared
around 1985

56

Tuple spaces

•  A tuple space is a collection of tuples such as
 {(“test”, 11, true), (“test”, 3, false), (“b”, 23), ... }

•  Tuple spaces can be read and modified via the following
operations:

•  out(a1, ..., an) write tuple
•  in(a1, ..., an) read and remove matching tuple
•  read(a1, ..., an) read matching tuple
•  eval(P) start a new process P

•  Pattern matching for in and read:
•  (a1, ..., an) can contain both actual and formal

parameters
•  If no matching tuple is found, the operation

blocks

57

Example: Tuple spaces

•  Assume we have the following tuple space:
 {(“test”, 11, true), (“test”, 3, false), (“b”, 23)}

•  Operations:
•  in(“a”, x) blocks, no matching tuple
•  in(“test”, x, b) removes tuple (“test”, 11, true)

and binds 11 to x and true to b (could have also
selected tuple (“test”, 3, false))

•  read(“test”, x, b) reads tuple (“test”, 3, false)
•  out(“a”, 14) puts (“a”, 14) into the tuple space
•  The last action unblocks in(“a”, x), which will

remove the inserted tuple

58

Simulating semaphores in Linda

•  Semaphores can be implemented in Linda
•  Initilization: tuple space with k tuples (“token”)
•  Implement down with in(“token”)
•  Implement up with out(“token”)

•  Solution to the mutual exclusion problem:

while true do
 in(“token”)
 critical section
 out(“token”)
 non-critical section
end

59

Linda: Discussion

•  Communicating processes in Linda are only loosely
coupled, processes need not know about other processes

•  The coordination language is completely orthogonal to
computation

•  Distribution of processes is easy
•  Potentially processes written in different

languages can cooperate
•  Implementations of Linda can be found in several

languages such as Java (JavaSpaces) and C

