Concepts of Concurrent Computation

Seminar Talk

Karolos Antoniadis

April 17, 2013

Applying Transactional Memory
to Concurrency Bugs

Haris Volos, Andres Jaan Tack,
Michael M. Swift, Shan Lu

ASPLOS' 12

What is Transactional Memory (TM)?

Paradigm for concurrent programming that eliminates the usual
problems when programming with locks.

A transaction is a sequence of steps executed by a single
processor.

Transactions are:

» Atomic: each transaction either commits (it takes effect) or
aborts (its effects are discarded)

» Isolated: intermediate changes of one transaction are not
visible to other transactions

There are hardware, software and hybrids TMs.

Motivation

Check utility of TM as a tool for fixing concurrency bugs.

Find mechanisms that could be useful if added in TM.

Bug-Fixing Methods

» Ingredients: underlying mechanisms provided by TM.

» Recipes: methods on how to combine the mechanisms to fix
bugs.

Ingredients

» Atomic regions: ensure that transactions execute atomically
and in isolation.

» Explicit rollback (retry): transactions can rollback partially
executed transactions.
Can be used to wait until some condition is true, similar to
condition variables.

» Preemptible resources: can safely be acquired inside a
transaction and automatically released if the transaction
aborts.

» Atomic/lock serialization: synchronizes accesses protected
under a transaction with accesses protected under a lock.

6/19

Replacement of Deadlock-Prone Locks

Remove all locks contributing to a deadlock and insert transactions
in their places.

urce 1 urce 2
fock (AY | : iock (B
o
lock (B): :Iock (A):
|| atomic { : atomic {
U ookt || Heek(B)-

} }

If deadlock is about to occur, it
is prevented by:

> serializing the threads
involved

» automatically aborting one
or more transactions

19

(Asymmetric) Deadlock Preemption

Make at least one thread involved in the deadlock preemptible.

Source 1
flock (A)

ook (8) |

LU

atomic {
lock (A)

lock (B)
}

unlock(A)
unlock(B)

Source 2

lock (B)
lock (A)

unlock(A)
unlock(B)

Removes non-preemption
requirement for a deadlock.

Code wrapped in a transaction
better if used infrequently.

Requires:
> preemptible resources

» deadlock detector

19

Wrap All

Wrap all conflicting code regions into transactions.

Source1 Source?2
|read x| Ilock (A) |
|write x 1\ |readx
-0 | write x
, | unlock(A)'
atomic { | 7| atomic {
read x lock (A)
write x read x
} write x
unlock (A)
}

Ensures that memory accesses
are protected under the same
synchronization mechanism.

19

Wrap Unprotected

Wrap the code region intended to be executed atomically in a
transaction.

Source1 Source?2 “Wrap All" recipe duplicates any
Tread x| lock (A) existing effort put into using
| write x| read x locks.
-0~ write x
y unlock(A) .
atomic { Requires:
read x

; » atomic/lock serialization
write x

}

10/19

Recipes Comparison

Atomic Explicit Preemptible
Regions Rollback Resources
Replacement NO
of Deadlock-
Prone Locks
Deadlock YES +
Preemption Not needt_aq by deadlock
YES a specific st
recipe
Wrap All YES(?)
Wrap YES
Unprotected

Atomic/Lock
Serialization

NO

NO

NO
YES

“Deadlock Preemption” and "“Wrap Unprotected” easy to apply

since existing locks are not removed.
Less code changes (only one transaction is added).
Better performance, less overhead by the TM.

Although they need more ingredients.

11/19

Apache: Deadlock Bug

(solved using deadlock preemption)

1 worker_thread(...) 1 listener_thread {(...) 1 listener_thread (...)
2 { 2 2 |
3 3 . v A
4 LOCK (timeout); 4 LOCK (timeout); | 4 atomic {
5 .. 5 .. 1| 5 LOCK (timeout);
6 UNLOCK (timeout); 6 |LOCK (idlers); |6
7 .. 7 .. 7 LOCK (idlers);
8 LOCK (idlers) 8 | COND_WAIT (wait_for_idler,: | 8
9 . 9 .. idlers) i | 9 it ICOND_TRY_WAITY(...))
10 SIGNAL (wait_for_idlers) 10 {UNLOCK (idlers) . |10 retry;
1 . 11 11 UNLOCK (idlers)
12 UNLOCK (idlers) 12 UNLOCK (timeout) 12}
13 } 13 } 13 ...
14 UNLOCK (timeout)
15}
(a) Buggy code (b) Fixed with TM

12 /19

Apache: Deadlock Bug

Developers fix: Unlock the timeout lock before going through the
conditional wait. Took them 3 failed attempts.

TM fix is 22% slower than the developers, but is preferable since:
» simple, no reasoning
» performance under stress test workload

> retry was done with spinning

13 /19

Apache: Atomicity Violation Bug

(solved using wrap unprotected)

1 void ap_buffered_log_writer (...) 1 void ap_buffered_log_writer (...)
2 { 2
3 / "~
4 8= &buner‘[bu ->outputCount]; *atomic{
5 | memcpy (s, str, len); ‘ 5 s = &buffer[buf->outputCount];
6 temp = buf->outputCount + len; 6 memcpy (s, str, len);
7 ' buf->outputCount = temp; 1 7 temp = buf->outputCount + len;
8 | apr_file_write(buf->handle); 8 buf->outputCount = temp;
Q i 9 apr_file_write(buf->handle);
10 } 10 }
11
12}
(a) Buggy code (b) Fixed with TM

I/O is done using xCalls: library-based implementation of transactional

semantics for common system calls.

14 /19

Apache: Atomicity Violation Bug

Developers fix: assign a lock to each log device, more scalable
than using a single big lock.

TM fix is 4% slower and is preferable because:
» it is local (only changes inside one function)

» has comparable performance with the developers fix

15/19

Evaluation

Tried to use TM to fix 60 bugs in already found and fixed bugs in
Mozilla, Apache HTTP Server and MySQL.

» Fixed 43 out of the 60 bugs.

» Out of the 43 TM fixes, 34 of them are preferable to the
developers fixes.

16 /19

Why can’'t TM fix every concurrent bug?

v

Locks contained in multiple modules.

Code that needs to be changed is contained in third-party
plugins.

v

> Design errors.

v

Long-running operations.

v

Two-way communication.

17 /19

Conclusion

» Straightforward use of TM has the expressive power to fix
many concurrency bugs.

» But still work to be done concerning TM performance.

» TM research could be directed to tackle:

> two-way communication
» long-running operations

18 /19

Questions?

19/19

