
Presented by Paolo Antonucci

How do Developers Use
Parallel Libraries?

S. Okur, D. Dig

25/04/2013

Computing is moving towards parallelism.

Parallelism can be made easier by the use of parallel
libraries.

We present today an empirical study on how parallel
libraries are used in real world by developers.

We will see the answers to specific questions about this.

Introduction

2

We will go through:

• Motivation
• Background – Microsoft .NET parallel libraries
• Methodology
• Results
• Conclusion

Outline

3

• Educating developers
– by pointing them to the most used constructs straight away
– by showing them some common mistakes

• Providing useful information to library developers
– Learning how parallel libraries are used (and misused) in practice is

crucial for effectively improving them

• Providing information to the research community
– Research in other not strictly inherent fields (e.g. verification) can be

affected by these data

Motivation

4

We here analyze the usage of some .NET parallel
libraries, in particular:
• System.Threading

• Concurrent Collections (CC)
• Task Parallel Library (TPL)
• Parallel LINQ

(LINQ = Language INtegrated Query)

Most of these can be compared to similar libraries in
Java.

Background

5

• Classes Task and Task<T> representing a task to be
executed with no specific associated thread

• Static Parallel class providing functionality for
parallel loops and invocation of methods

Background – Task Parallel Library

6

Parallel.For(0, 10, counter => { ProcessTask(counter, 17); });

static void ProcessTask(int taskNum, int somethingElse)

 {
 // Do something

 }

Example

• Corpus: CodePlex (Microsoft) and Github
• Downloaded all active projects importing TPL,

PLINQ, CC and System.Threading libraries
• Some filters applied:

– Broken (not-compiling) and very small applications
– Applications importing but never using parallel libraries
– Application only using System.Threading for delays and timers

• Result: 17.6 million significant lines of code

Methodology – corpus of data

7

• Microsoft Roslyn API for syntactical and semantic
analysis of C# applications
– More than just syntactical analysis, able to answer

questions such as “What is the type of this variable?”

• Ad hoc ANALYZER tool developed
– Specific analysis implemented for each question

Methodology – analysis infrastructure

8

(Significant lines of code)

Results:
Q1: Are developers embracing multithreading?

9

Type
Small

(1K – 10K)
Medium

(10K – 100K)
Large

(> 100K)
Total

Total .NET 4.0 compilable applications 6020 100% 1553 100% 205 100% 7778 100%

Multithreaded applications 1761 29% 916 59% 178 87% 2855 37%

Application adopting TPL, PLINQ 412 7% 203 13% 40 20% 655 8%

Multithreading is widely used in medium and large applications,
however the adoption of advanced libraries is still limited.

Results:
Q2: Which parallel constructs are mostly used?

10

That is, in practice, what methods of which classes are called
most often?

As an example we will show here the results of this analysis
for the TPL library.

It is worth reminding that we are not speaking of heuristics:
semantic analysis means that these results are 100% precise.

Results:
Q2: Which parallel constructs are mostly used?

11

Class name
% in

library
Method name # Call sites % in class # Apps

TaskFactory 30
StartNew 1256 72 286

FromAsync 121 7 32

Task 23

ContinueWith 372 28 122

Wait 273 20 110

Start 243 18 92

Constructor 225 17 82

WaitAll 172 13 91

Parallel

(static class)
14

For 450 53 102

ForEach 365 43 133

Invoke 37 4 23

Task<TResult> 11
ContinueWith 536 86 113

Constructor 85 4 40

Results:
Q2: Which parallel constructs are mostly used?

12

The table only shows the first few most popular methods,
out of 1651 total methods.
 Out of these, 1114 (that is 67%) are never used in the corpus!

We draw two important conclusions:

Parallel library usage follows a power-law distribution: 10% of the
API methods account for 90% of the total usage.

If you study just a very small bunch of important classes and
methods, you are ready to go for most common situations!

Results:
Q3: Which advanced features do developers use?

13

Or even better, do they use them at all?

Just an example: Parallel.Invoke, For and ForEach.

They take an optional argument, ParallelOptions, which can
be used for advanced features such as limiting the maximum
concurrency and specifying a custom task scheduler.

The advanced features and optional arguments
are rarely used in practice.

Only 3% of calls use ParallelOptions!

Results – Q4: Do developers make their
parallel code unnecessarily complex?

14

Methods Complicated()

and Compact() are
equivalent.

static void FirstMethod()
{
 // Do something
}

static void SecondMethod()
{
 // Do something else
}

static void Complicated()
{
 Task FirstTask = new Task(FirstMethod);
 Task SecondTask = new Task(SecondMethod);
 Task[] tasks = new Task[]
 {FirstTask, SecondTask};
 Array.ForEach(tasks, t => t.Start());
 Task.WaitAll(tasks);
}

static void Compact()
{
 Parallel.Invoke(FirstMethod, SecondMethod);
}

TPL provides some high-level constructs that allow developers
to implement parallel code more concisely.

Results – Q4: Do developers make their
parallel code unnecessarily complex?

15

Not unfrequently, programmers launch tasks in for/foreach
loops.

ANALYZER detected that in 29% (underapproximation) of
these cases, the Parallel.For/Foreach construct could
have been used, which is more compact and less error-
prone.

Despite the fact that parallel programs are already complex,
developers make them even more complex than they need to be.

Results – Q5: Are there constructs that
developers commonly misuse?

16

static void Misuse(string someString)
{
 // Some instructions
 Parallel.Invoke(() => MyMethod(someString));
 // Some more instructions
}

Sometimes developers seem to misunderstand what the
Parallel.Invoke() method does.

“Oh well, if it is called Parallel, it must run in parallel…”

This happens in as much as 11% of usages of Parallel.Invoke()!

Results – Q5: Are there constructs that
developers commonly misuse?

17

foreach (var module in Modules.AsParallel())
 module.Refresh();

Another commonly misunderstood method is PLINQ’s
AsParallel() method.

This method converts an Enumerable into a ParallelEnumerable
collection. Any method called on such a parallel enumeration will
execute in parallel.

27 occurrences of this in 19 applications, accounting for as
much as 12% of all AsParallel() usages!

This code executes
sequentially

Results – Q5: Are there constructs that
developers commonly misuse?

18

Some parallel constructs are not always understood and employed
properly, leading to code with parallel syntax but sequential execution

In conclusion:

Compile-time warnings could help mitigate this problem in
some cases.

• This paper is a greatly helpful reading to developers
planning to embrace these parallel libraries

• The findings of this research have been shared with
the developers of the analyzed libraries

• The results also provide some interesting starting
points for research in related fields
– For example refactoring of unnecessarily complex code

Conclusion

19

+ Interesting paper, very smooth and pleasant reading
+ Self-contained
+ May have impact on future library development

- Some answers not relevant, some assumptions are

probably an oversimplifications
- Could have said a bit more about Microsoft Roslyn
- Overall probably not a milestone in research in

computer science

My personal conclusion

20

• Website of this study:
http://learnparallelism.net

• The Roslyn Project
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

• More references in the paper

References

21

http://learnparallelism.net/
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx
http://msdn.microsoft.com/en-us/vstudio/roslyn.aspx

Question time

22

Questions?

