
Seminar talk

Java and the Java Memory Model
A Unified, Machine-Checked

Formalisation

Andreas Lochbihler

Karlsruher Institute für Technologie

ESOP, 2012

Presented by Hartmut Keil

Java and the Java Memory Model – A Unified, Machine-
Checked Formalisation

1

Agenda

• Introduction to the Java Memory Model

• Formalization of Java and its Memory Model

• Proof of the DRF guarantee of the Java Memory Model

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 2

What is Memory model?

• A memory model (MM) describes, given a program and an execution trace,
whether the execution trace of a program is legal execution of the program.

• Consider the example
(obviously not correctly synchronized)

• Is the result r1 = 1, r2 = 2 possible?

• The result is not possible with Sequential Consistency
(But within the Java Memory Model it is possible)

Initially x := 0 y := 0

Thread 1 Thread 2

1: r2 = x 3: r1 = y

2: y = 1 4: x = 2

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 3

Sequential Consistency (SC) - definition

• A execution of a program is sequential consistent, if the result of that execution
can be achieved on a uni-processor

 Intuitive interleaving semantic

 For a memory model Sequential Consistency disallows most
compiler/JVM/hardware optimizations

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 4

The Java Memory Model (JMM) - claims

• Sequential Consistency like behaviour for correctly synchronised programs
(DRF guarantee)

• ‘reasonable’ behaviour for not correctly synchronised programs

• Allow as many compiler/JVM optimizations as possible

JMM
Compiler

optimizations
Ease of use

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 5

The Synchronizes-With Order sw - definition

Inter-thread actions (not complete)

• Read/write of a non-volatile shared variable

• Synchronizations actions:
• Read/write of a volatile shared variable

• Lock/unlock of a monitor

Synchronizes-With Order

• An unlock action of a monitor m synchronizes-with all
subsequent lock actions on the monitor m

• A write to a volatile variable v synchronizes-with all subsequent reads of v

• Notation: sw(a,b)

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 6

program order T1

program order T2

a

b

The Happens-Before Order hb - definition

• The program order po and the Synchronizes-With Order sw induces a Happens-
Bevor Order

• Happens-Bevor Order is only a partial order

• Notation: hb(c,d)

program order T1

program order T2

c

a

b

d

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 7

Correctly Synchronized programs - definition

• Data Race:
• Two accesses x and y of different threads

• x and y are conflicting (at least one is write)

• No Happens-Before Order for x and y exists

• Correctly Synchronized program:
All Sequential Consistent excecutions of the program are free of Data Races

program order T1

program order T2

c

a

b

d

x

y

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 8

The Java Memory Model – legal executions

• The JMM defines executions of a program P as a tuple
𝐸 = < 𝑃, 𝐴, 𝑝𝑜, 𝑠𝑜, 𝑊, 𝑉, 𝑠𝑤, ℎ𝑏 >

• set of actions A and program order po

• Synchronizes-With Order sw and Happens-Before Order hb

• Write-Seen function W(r) and Value-Writen function V(w)

• A execution is Well-Formed if it is Happens-Before consistent
formal: ¬ hb(r,W(r))

• Causality requirements for Well-Formed executions :
Every action a in a execution must by validated by a well defined commiting
procedure

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 9

The Java Memory Model – formalisation of
Java
• The JMM argues in terms of actions and order relationships

• How to connect the JMM to the semantic of Java?

• Idea: formalization of Java

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 10

Formalisation of Java - JinjaThreads

• Model of Java-like language

• meta language Isabelle/HOL

• It is a huge model
• > 20000 lines of Isabelle/HOL text

• >1000 theorems

• all proves are machine-checked

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 11

DRF guarantee – proof

• We have to proof that
• Given a correctly synchronised program

• All legal executions are Sequential Consistency

• Lemma: if every read r sees a write w and hb(w,r)) => execution is SC

• Proof
• assume that a legal execution of a correctly synchronised is not SC

• use the lemma to find an action that can not be commited

• => contradiction

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 12

Future Work

• The formalisation and the DRF proof can be carried over for other languages

• The initialisation specified by the JMM caused complications in several proofs

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 13

Questions

Java and the Java Memory Model – A Unified, Machine-Checked Formalisation 14

