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Data Races vs. Data Race Bugs

Telling the difference with “Portend”

» Data race defined as

» two or more concurrent memory accesses to
the same location

» at least one access is a write-access

» “fixing” all data races rarely
» desired (performance)

» necessary (76%-90% are harmless)




Data Races vs. Data Race Bugs

Telling the difference with “Portend”

Data race bugs are very hard to reproduce

To fixing data race bugs proactively:

» find data races
» determine whether harmful
» develop a fix




Data Races vs. Data Race Bugs

Telling the difference with “Portend”

Data race bugs are very hard to reproduce

To fixing data race bugs proactively:

» find data races » tools
» determine whether harmful » this paper
» develop a fix » by hand




Data Races vs. Data Race Bugs

Telling the difference with “Portend”

Key contributions

» Four-category taxonomy of data races
» Technique for predicting consequences of data races

» Implementation of the above: “Portend”




Data Race Classification

specViol

outDiff

k-withess

singleOrd

Program crashes or programmer specification violated

Output differs between executions

Harmless for at least k different paths and schedules

Only a single ordering possible!

' Arguably not a data race



Data Race Classification
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Portend Pipeline
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Single-Pre/Single-Post Analysis

Detect singleOrd data races, deadlocks

» Run schedule from report/detector

» On first racing access of data race d
» Take snapshot pre of current program state

» Continue

» On second racing access of data race d

» Take snapshot post of current program state

(cont)

“Single-Path”
Analysis

primary alternate




Single-Pre/Single-Post Analysis

Detect singleOrd data races, deadlocks
“Single-Path”
Analysis
(cont)
» Reset program state to pre
» Run different schedule
race
» Preempt thread that won last time .
» Capture program output as alternate \\‘
» Run original schedule primary alternate

» Reset program state to post

» Capture program output as primary
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Single-Pre/Single-Post Analysis

Possible outcomes

“Single-Path”

Analysis
» No alternate scheduling
» detected deadlock, treat as specViol
» program doesn’t terminate (timeout)
» if infinite loop, treat as specViol race
» else treat as singleOrd N
» Found alternate scheduling “x
primary alternate

» check for semantic specification
violations (specViol)

» compare program outputs (outDiff, outSame)

» important: compare program output, not state after race
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Multi-Path Data Race Analysis

Multiple inputs over the same thread schedule

» Execute program using symbolic inputs
» path explosion

» Abandon paths that contradict
thread schedule

» After 2" racing access
» collect M, different paths
» call these our “primaries”

(cont)

“Multi-Path”
Analysis

branch

instruction -

that depends . data race

on symbolic y

data completa
e execution
| path
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execution
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Multi-Path Data Race Analysis

Multiple inputs over the same thread schedule

(cont)

For each “primary”:

» record symbolic output

» let SMT solver find concrete inputs

» run alternate scheduling with concrete
inputs

» as in single-path analysis

» compare recorded output with symbolic
reference output from primary

» again via SMT solver

“Multi-Path”
Analysis

branch

instruction -

that depends . data race

on symbolic y

data completa
.................... execution

path

execution
path
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Multi-Schedule Data Race Analysis

Multiple schedules over multiple inputs
“Multi-Path”
Analysis
|dea: after data race, don’t follow
existing schedule

» Generate M, different post-race

schedules (randomized) race
» Record output and compare with NN

primary R

primary alternates

If output matches, we have

k=M, XM,
“witnesses” that race is harmless (k-witness)
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Portend Implementation Details

» Consumes LLVM bitcode programs

» 8K lines of C++, excluding libraries
» KLEE, symbolic virtual machine for LLVM bitcode

» Cloud9 (EPFL), parallel symbolic execution engine
» Symbolic POSIX emulation (part of Cloud9)

» Preemption points for single processor scheduling
» POSIX synchronization primitives

» data racing memory accesses
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Portend Accuracy

How many races does Portend classify correctly?

— 100 | o ——F——n R
: . %« 75 ' /,.1?';‘
» Testsuite with 93 data races s | 7 - _
3 race -8
» SQLite 3.3.0, memcached 1.4.5, ... < s . Mimcagbﬁ\;:;x_,.,., :
. . 1 3 5 7 9
» hand-written micro-benchmarks o otk

» Classify data races by hand

» Compare with Portend classification
» 92 out of 93 races correctly classified
» One k-witness race was actually harmful

» k =5 (same result with k = 10)
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Portend Results

y ? Total # # of “Spec violated” races
What did Portend report? Program | 7% ' Deadlock | Crash | Semanfic
SQLite 1 1 0 0
pbzip2 31 0 3 0
ctrace 15 0 1 0
. . fmm 13 0 0 I
> Mult1-path + multi-schedule memcached 18 0 ] 0
were vital for accuracy
Single-path ]
» Single-path often classified 80% Ao i it
or more data races as SingleOrd Multl-path + Multi-schedule m—
» “Ctrace” mainly resulted in —~ 100 ' ' ' '
. 2 80 | -
outDiff & 60| ]
3 40 -
£ 20 F T -
Ctrace Pbzip2 Memcached Bbuf
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Portend Performance

» Kk-witness races take very long
» many executions to simulate

» memcached: 11 minutes to classify races

» Classification compared to bitcode interpretation
» factor x 1.1 to x 49.9 longer

» Extreme (X 3) variance in some cases
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Limitations of Portend

» Performance nowhere near “interactive”

» but M, X M, executions could be run in parallel

» Only POSIX synchronization primitives

» Ignores machine-specific mechanisms (x86)

» Only single-processor model

» Assumes memory-consistency, serializable execution
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Thank you

Questions?







Additional Slides




Portend Performance Results

Cloud9 running

Portend classification time (sec)

Program time (sec) Avg Min Max

SQLite 3.10 4.20 4.09 4.25
ocean 19.64 60.02 19.90 207.14
fmm 24.87 64.45 65.29 72.83
memcached 73.87 645.99 619.32 730.37
pbzip2 15.30 360.72 61.36 763.43
ctrace 3.67 24.29 5.54 41.08
bbuf [.81 4.47 4.77 5.82
AVV 0.72 0.83 0.78 1.02
DCL 0.74 0.85 0.83 0.89
DBM 0.72 0.81 0.79 0.83
RW 0.74 0.81 0.81 0.82
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