
Data Races vs.

Data Race Bugs
by Baris Kasikci, Cristian Zamfir, and George Candea

École Polytechnique Fédérale de Lausanne (EPFL)

ASPLOS 2012

Christian Klauser

Data Races vs. Data Race Bugs

 Data race defined as

 two or more concurrent memory accesses to

the same location

 at least one access is a write-access

 “fixing” all data races rarely

 desired (performance)

 necessary (76%-90% are harmless)

Telling the difference with “Portend”

2

Data Races vs. Data Race Bugs

Data race bugs are very hard to reproduce

To fixing data race bugs proactively:

 find data races

 determine whether harmful

 develop a fix

Telling the difference with “Portend”

3

Data Races vs. Data Race Bugs

Data race bugs are very hard to reproduce

To fixing data race bugs proactively:

 find data races tools

 determine whether harmful this paper

 develop a fix by hand

Telling the difference with “Portend”

4

Data Races vs. Data Race Bugs

Key contributions

 Four-category taxonomy of data races

 Technique for predicting consequences of data races

 Implementation of the above: “Portend”

Telling the difference with “Portend”

5

Data Race Classification

specViol

outDiff

k-witness

singleOrd

Program crashes or programmer specification violated

Output differs between executions

Harmless for at least k different paths and schedules

Only a single ordering possible1

1 Arguably not a data race

6

Data Race Classification

reported data race

true positive false positive

harmful harmless

specViol outDiff k-witness singleOrd

7

outSame

Portend Pipeline

8

Dynamic data

race detector

“Single-Path”

Analysis

“Multi-Path”

Analysis

other race

detection reports

Record&Replay

Engine

Classification

Debug Report

Single-Pre/Single-Post Analysis

 Run schedule from report/detector

 On first racing access of data race 𝑑

 Take snapshot 𝑝𝑟𝑒 of current program state

 Continue

 On second racing access of data race 𝑑

 Take snapshot 𝑝𝑜𝑠𝑡 of current program state

(cont)

9

“Single-Path”

Analysis

Detect singleOrd data races, deadlocks

primary alternate

race

Single-Pre/Single-Post Analysis

(cont)

 Reset program state to 𝑝𝑟𝑒

 Run different schedule

 Preempt thread that won last time

 Capture program output as 𝒂𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆

 Run original schedule

 Reset program state to 𝑝𝑜𝑠𝑡

 Capture program output as 𝒑𝒓𝒊𝒎𝒂𝒓𝒚

10

“Single-Path”

Analysis

Detect singleOrd data races, deadlocks

primary alternate

race

Single-Pre/Single-Post Analysis

 No alternate scheduling

 detected deadlock, treat as specViol

 program doesn’t terminate (timeout)

 if infinite loop, treat as specViol

 else treat as singleOrd

 Found alternate scheduling

 check for semantic specification

violations (specViol)

 compare program outputs (outDiff, outSame)

 important: compare program output, not state after race

11

“Single-Path”

Analysis

Possible outcomes

primary alternate

race

Portend Pipeline

12

Dynamic data

race detector

“Single-Path”

Analysis

“Multi-Path”

Analysis

other race

detection reports

Record&Replay

Engine

Classification

Debug Report

Multi-Path Data Race Analysis

 Execute program using symbolic inputs

 path explosion

 Abandon paths that contradict

thread schedule

 After 2nd racing access

 collect 𝑀𝑝 different paths

 call these our “primaries”

(cont)

13

Multiple inputs over the same thread schedule
“Multi-Path”

Analysis

Multi-Path Data Race Analysis

(cont)

For each “primary”:

 record symbolic output

 let SMT solver find concrete inputs

 run alternate scheduling with concrete

inputs

 as in single-path analysis

 compare recorded output with symbolic

reference output from primary

 again via SMT solver

14

Multiple inputs over the same thread schedule
“Multi-Path”

Analysis

Multi-Schedule Data Race Analysis

Idea: after data race, don’t follow

existing schedule

 Generate 𝑀𝑎 different post-race

schedules (randomized)

 Record output and compare with

primary

15

Multiple schedules over multiple inputs
“Multi-Path”

Analysis

primary alternates

race

If output matches, we have

𝑘 = 𝑀𝑝 ×𝑀𝑎

“witnesses” that race is harmless (k-witness)

Portend Implementation Details

 Consumes LLVM bitcode programs

 8K lines of C++, excluding libraries

 KLEE, symbolic virtual machine for LLVM bitcode

 Cloud9 (EPFL), parallel symbolic execution engine

 Symbolic POSIX emulation (part of Cloud9)

 Preemption points for single processor scheduling

 POSIX synchronization primitives

 data racing memory accesses

16

Portend Accuracy
How many races does Portend classify correctly?

 Testsuite with 93 data races

 SQLite 3.3.0, memcached 1.4.5, …

 hand-written micro-benchmarks

 Classify data races by hand

 Compare with Portend classification

 92 out of 93 races correctly classified

 One k-witness race was actually harmful

 𝑘 = 5 (same result with 𝑘 = 10)

17

Portend Results
What did Portend report?

 Multi-path + multi-schedule

were vital for accuracy

 Single-path often classified 80%

or more data races as singleOrd

 “Ctrace” mainly resulted in

outDiff

18

Portend Performance

 k-witness races take very long

 many executions to simulate

 memcached: 11 minutes to classify races

 Classification compared to bitcode interpretation

 factor × 1.1 to × 49.9 longer

 Extreme (× 3) variance in some cases

19

Limitations of Portend

 Performance nowhere near “interactive”

 but 𝑀𝑝 ×𝑀𝑎 executions could be run in parallel

 Only POSIX synchronization primitives

 Ignores machine-specific mechanisms (x86)

 Only single-processor model

 Assumes memory-consistency, serializable execution

20

Questions?
Thank you

21

22

Additional Slides

23

Portend Performance Results

24

References

 Illustrations and tables taken from

“Data Races vs. Data Race Bugs: Telling the Difference

with Portend, Baris Kasikci, Cristian Zamfir, and George

Candea, ASPLOS’12”

25

