
Data Races vs. 

Data Race Bugs
by Baris Kasikci, Cristian Zamfir, and George Candea

École Polytechnique Fédérale de Lausanne (EPFL)

ASPLOS 2012

Christian Klauser



Data Races vs. Data Race Bugs

 Data race defined as

 two or more concurrent memory accesses to 

the same location

 at least one access is a write-access

 “fixing” all data races rarely

 desired (performance)

 necessary (76%-90% are harmless)

Telling the difference with “Portend”

2



Data Races vs. Data Race Bugs

Data race bugs are very hard to reproduce

To fixing data race bugs proactively:

 find data races

 determine whether harmful

 develop a fix

Telling the difference with “Portend”

3



Data Races vs. Data Race Bugs

Data race bugs are very hard to reproduce

To fixing data race bugs proactively:

 find data races  tools

 determine whether harmful  this paper

 develop a fix  by hand

Telling the difference with “Portend”

4



Data Races vs. Data Race Bugs

Key contributions

 Four-category taxonomy of data races

 Technique for predicting consequences of data races

 Implementation of the above: “Portend”

Telling the difference with “Portend”

5



Data Race Classification

specViol

outDiff

k-witness

singleOrd

Program crashes or programmer specification violated

Output differs between executions

Harmless for at least k different paths and schedules

Only a single ordering possible1

1 Arguably not a data race

6



Data Race Classification

reported data race

true positive false positive

harmful harmless

specViol outDiff k-witness singleOrd

7

outSame



Portend Pipeline

8

Dynamic data 

race detector

“Single-Path” 

Analysis

“Multi-Path” 

Analysis

other race 

detection reports

Record&Replay

Engine

Classification

Debug Report



Single-Pre/Single-Post Analysis

 Run schedule from report/detector

 On first racing access of data race 𝑑

 Take snapshot 𝑝𝑟𝑒 of current program state

 Continue

 On second racing access of data race 𝑑

 Take snapshot 𝑝𝑜𝑠𝑡 of current program state

(cont)

9

“Single-Path” 

Analysis

Detect singleOrd data races, deadlocks

primary alternate

race



Single-Pre/Single-Post Analysis

(cont)

 Reset program state to 𝑝𝑟𝑒

 Run different schedule

 Preempt thread that won last time

 Capture program output as 𝒂𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆

 Run original schedule

 Reset program state to 𝑝𝑜𝑠𝑡

 Capture program output as 𝒑𝒓𝒊𝒎𝒂𝒓𝒚

10

“Single-Path” 

Analysis

Detect singleOrd data races, deadlocks

primary alternate

race



Single-Pre/Single-Post Analysis

 No alternate scheduling

 detected deadlock, treat as specViol

 program doesn’t terminate (timeout)

 if infinite loop, treat as specViol

 else treat as singleOrd

 Found alternate scheduling

 check for semantic specification 

violations (specViol)

 compare program outputs (outDiff, outSame)

 important: compare program output, not state after race

11

“Single-Path” 

Analysis

Possible outcomes

primary alternate

race



Portend Pipeline

12

Dynamic data 

race detector

“Single-Path” 

Analysis

“Multi-Path” 

Analysis

other race 

detection reports

Record&Replay

Engine

Classification

Debug Report



Multi-Path Data Race Analysis

 Execute program using symbolic inputs

 path explosion

 Abandon paths that contradict 

thread schedule

 After 2nd racing access

 collect 𝑀𝑝 different paths

 call these our “primaries”

(cont)

13

Multiple inputs over the same thread schedule
“Multi-Path” 

Analysis



Multi-Path Data Race Analysis

(cont)

For each “primary”:

 record symbolic output

 let SMT solver find concrete inputs

 run alternate scheduling with concrete 

inputs

 as in single-path analysis

 compare recorded output with symbolic 

reference output from primary

 again via SMT solver

14

Multiple inputs over the same thread schedule
“Multi-Path” 

Analysis



Multi-Schedule Data Race Analysis

Idea: after data race, don’t follow 

existing schedule

 Generate 𝑀𝑎 different post-race 

schedules (randomized)

 Record output and compare with 

primary

15

Multiple schedules over multiple inputs
“Multi-Path” 

Analysis

primary alternates

race

If output matches, we have

𝑘 = 𝑀𝑝 ×𝑀𝑎

“witnesses” that race is harmless (k-witness)



Portend Implementation Details

 Consumes LLVM bitcode programs

 8K lines of C++, excluding libraries

 KLEE, symbolic virtual machine for LLVM bitcode

 Cloud9 (EPFL), parallel symbolic execution engine

 Symbolic POSIX emulation (part of Cloud9)

 Preemption points for single processor scheduling

 POSIX synchronization primitives

 data racing memory accesses

16



Portend Accuracy
How many races does Portend classify correctly?

 Testsuite with 93 data races

 SQLite 3.3.0, memcached 1.4.5, …

 hand-written micro-benchmarks

 Classify data races by hand

 Compare with Portend classification

 92 out of 93 races correctly classified

 One k-witness race was actually harmful

 𝑘 = 5 (same result with 𝑘 = 10)

17



Portend Results
What did Portend report?

 Multi-path + multi-schedule 

were vital for accuracy

 Single-path often classified 80% 

or more data races as singleOrd

 “Ctrace” mainly resulted in 

outDiff

18



Portend Performance

 k-witness races take very long

 many executions to simulate

 memcached: 11 minutes to classify races

 Classification compared to bitcode interpretation

 factor × 1.1 to × 49.9 longer

 Extreme (× 3) variance in some cases

19



Limitations of Portend

 Performance nowhere near “interactive”

 but 𝑀𝑝 ×𝑀𝑎 executions could be run in parallel

 Only POSIX synchronization primitives

 Ignores machine-specific mechanisms (x86)

 Only single-processor model

 Assumes memory-consistency, serializable execution

20



Questions?
Thank you

21



22



Additional Slides

23



Portend Performance Results

24



References

 Illustrations and tables taken from 

“Data Races vs. Data Race Bugs: Telling the Difference 

with Portend, Baris Kasikci, Cristian Zamfir, and George 

Candea, ASPLOS’12”

25


