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 Eventual consistency in a distributed system is nice. It 

allows temporarily disconnected replicas to remain fully 

available. 

 Find answers to the questions: 

1. How to provide consistency guarantees that are as 

strong as possible without losing lazy consensus? 

 

2. How to effectively understand and implement systems 

that provide these guarantees? 
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Goal 



 Model Assumptions 

 Important Definitions 

 Sequential vs. Eventual Consistency 

 Revision Consistency 

 Construction and Properties of Revision Diagrams 

 Theorem: Revision Consistency  Eventual Consistency 

 Conclusion and Future Work 
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Outline 

HOT 



Model Assumptions 

 Distributed system. 

 Multiple participants (clients). 

 One logical database, referred to as a  

Query-Update-Automaton (QUA). 

 Clients issue eventually consistent transactions, that 

cannot fail and never roll back. 

 All code runs inside transactions. 
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 This is a logical view of the situation. 

 The state of the QUA might be distributed and 

temporarily inconsistent. 
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Model Assumptions 

QUA 

eventually 

consistent 



Query-Update Interface & Automaton 

A query-update interface is a tuple 𝑄, 𝑉, 𝑈  where 

 𝑄 is a set of query operations. 

 𝑉 is a set of values returned by queries. 

 𝑈 is a set of update operations. 

 

Definition 

A query-update automaton (QUA) for interface 𝑄, 𝑉, 𝑈  is a 

tuple (𝑆, 𝑠0) together with an interpretation, where 

 𝑆 is a set of states 

 𝑠0 is the initial state 

 𝑞# is an interpretation of query 𝑞 ∈ 𝑄 as a function 𝑆 → 𝑉 

 𝑢# is an interpretation of command 𝑢 ∈ 𝑄 as a function 𝑆 → 𝑆 

 

 

Definition 
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Histories 

A history 𝐻 is a map that maps each client 𝑐 ∈ 𝐶 to a finite 

or infinite sequence 𝐻(𝑐) of following events: 

 𝑢 ∈ 𝑈 is an update issued by the client. 

 (𝑞, 𝑣) represents a query  with its return value. 

 yield commits transactions. 
 

Definition 

CLIENT #1 

x := load(a); 
store(b, x); 
yield; 
y := load(b); 
store(a, y); 
yield; 

CLIENT #2 

store(c, 5); 
yield; 
i := load(c); 
store(c, i+2); 
yield; 

Example: 
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Consistency Models 

 Sequential Consistency: 

“The result of any execution is the same as if the operations 

of all the processors were executed in some sequential 

order, while retaining the program order.” 

 

 Eventual Consistency: 

“If no new updates are made to a data object, eventually all 

accesses will return a consistent value.” 
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History 

Partial order Total order 
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Enhance History with Additional Orders 

CLIENT #1 CLIENT #2 CLIENT #3 



Sequentially Consistent History 

 Find a single partial order <  over all events in a given 

history, with the following properties: 

 Compatibility with program order. 

 Past events are totally ordered. 

 Transactions are atomic. 

 Transactions are executed in isolation. 

 Committed transactions are eventually delivered to all 

participants. 

 

Sequential consistency does not tolerate temporary 

network partitions! 
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Eventually Consistent History 

 Instead of one partial order, we try to find two: 

 Visibility order <𝑣 

 Arbitration order <𝑎 

 

 The visibility order defines which events’ effects are 

visible to which other events. 

 The arbitration order defines the relative order of past 

events. 

Eventual consistency tolerates temporary network 

partitions! 
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Eventual Consistency in Related Work 

 In order to arbitrate events, two common approaches 

exist: 

 Use timestamps, actual or logical. 

 Make updates commutative. 

 

 This paper suggests a different approach, which does 

not require any of the above. 

 Main contribution of the paper. 
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Write Stabilization Problem 

Robinson Bob Alice 

update(); 
yield; 

update(); 
yield; 

Repeat 1000x: 
update(); 
yield; 
 

Cannot stabilize! 

Repeat 1000x: 
update(); 
yield; 
 

Cannot stabilize! 

update(); 
yield; 

Robinson reconnects! 

Robinson disconnects! 

Solution: 

Simply order Robinson’s update after all the others! 
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Perform 

important 

update! 



Revision Diagrams 

 A definition of Eventual Consistency does not by itself 

give guidelines as to how to build a system that is 

eventually consistent. 

 That’s why Revision Diagrams are introduced. 

 Examples: 
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Revisions 

 Revisions are logical replicas of the state. 

 Clients work with one revision at a time, and can 

perform operations on it. 

 Reconciliation happens during a so-called join 

operation between two revisions. 
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Revision Diagram: Construction Rules 

𝑡 

𝑥 

Join 

𝑡′ 𝑡 

𝑥 

Fork 

𝑦 

𝑥 

𝑡 

Query, Update 

Vertices 

Directed edge 

Terminals 𝑡 

 Start with root vertex as the only terminal, and then: 

 



 In order for revision diagrams to be eventually 

consistent, the join condition needs to be satisfied. 

 

 

 

 

 This establishes important validity conditions and is 

needed for the proof of the upcoming theorem. 
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Join Condition 

Join condition: The vertex that forked the joined revision 

must reach the join vertex 

Definition 



Example of non-satisfied Join Condition 
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Fork 

Join 

Join revisions 



Graph Properties of Revision Diagrams 

 Vertices of the same 

revision have the 

same 𝒙-coordinate. 

 Fork vertices spawn 

new revisions to the 

right. 

 Join vertices merge 

revisions coming 

from the right. 
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𝒙 
0 1 2 

Root vertex 

Root path 

(no joins) 
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Effects of the Vertices 

For any vertex 𝑥, we let the effect of 𝑥 be a function 

𝑥°: 𝑆 → 𝑆 defined inductively as follows: 

 If 𝑥 is a start, fork or query vertex, there is no effect. 

 If 𝑥 is an update vertex for some update operation, 

then the effect is that update. 

 If 𝑥 is a join vertex, then the effect is the 

composition of all effects in the joined revision. 

  

Definition 
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Update Effects 

 
 

𝑙𝑜𝑎𝑑 𝑎 #(𝑠𝑡𝑜𝑟𝑒 𝑏, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 1 # 𝑠0 ) = 2 

𝑠0 



Witness for 
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Revision Diagrams  Histories 

CLIENT #1 

x := load(a); 
store(b, x); 
yield; 
y := load(b); 
store(a, y); 
yield; 

CLIENT #2 

store(c, 5); 
yield; 
i := load(c); 
store(c, i+2); 
yield; 

History Revision Diagram 

revision-consistent 
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Requirements of Witness Diagrams 

Root vertex 

Root path 

(no joins) 

 Query events match the path-

result. 

 Successive non-yield operations 

of the same client are connected 

by a vertical edge. 

 The beginning of a transaction 

must be reachable from the end 

of the previous transaction of the 

same client. 



 This would mean that the operation associated to this 

vertex could starve, i.e. could not eventually be 

delivered. 
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Neglected Vertices 

Image: © http://www.alternativedamm.de/ 

A vertex 𝑥 is neglected, if there exists an infinite number 

of vertices 𝑦 such that there is no path from 𝑥 to 𝑦. 

Definition 
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Theorem 

Let 𝐻 be a history. If there exists a witness diagram for 𝐻 

such that no committed events are neglected, then 𝐻 

is eventually consistent.  

Theorem 

 In the paper, a proof is included. 

 Note that the converse is not true, i.e. if 𝐻 is eventually 

consistent, there might not exist a witness diagram for 

it. 
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System Implementation 

Single Synchronous Server Model 

 Single server 

 Multiple clients 

 The server can spawn clients 

 Clients can join the server 

 Transactions are committed 

by clients by joining and forking 

again. 

Pro: Simple and intuitive 

Contra: Clients block if they 

have no connection 

Server Pool Model 

 Multiple servers 

 Multiple clients 

 Servers can spawn clients 

 Clients can join servers 

 Servers can join servers 

 Need vector clocks to ensure 

the join condition 

 

 

Pro: Better scalability; 

No blocking 

Contra: Complex 

 Two eventually consistent systems might look like: 

 



 Unique use of revision diagrams to determine both 

arbitration and visibility. 

 

 Revision Diagrams are simple to construct and can be 

visualized easily. 

 This eases system implementation and understanding. 
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Contribution 



 Extend study of this programming model. 

 Are there stronger consistency guarantees possible 

for subclasses of eventual consistent transactions? 

 

 This work had an impact on: 

 Cloud types for eventual consistency 1 

 Proposes the use of specialized cloud data types. 

 Library abstraction for C/C++ concurrency 2 

 Proposes a criterion for sound library abstraction in the new 

C11 and C++11 memory model. 
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Future Work and Impact 

1 Microsoft Research 
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