
Eventually Consistent

Transactions

Sebastian Burckhardt1, Daan Leijen1,
Manuel Fähndrich1, and Mooley Sagiv2

presented by Dominic Meier

1 Microsoft Research
2 Tel-Aviv University 4/17/2013

 Eventual consistency in a distributed system is nice. It

allows temporarily disconnected replicas to remain fully

available.

 Find answers to the questions:

1. How to provide consistency guarantees that are as

strong as possible without losing lazy consensus?

2. How to effectively understand and implement systems

that provide these guarantees?

2

Goal

 Model Assumptions

 Important Definitions

 Sequential vs. Eventual Consistency

 Revision Consistency

 Construction and Properties of Revision Diagrams

 Theorem: Revision Consistency  Eventual Consistency

 Conclusion and Future Work

 3

Outline

HOT

Model Assumptions

 Distributed system.

 Multiple participants (clients).

 One logical database, referred to as a

Query-Update-Automaton (QUA).

 Clients issue eventually consistent transactions, that

cannot fail and never roll back.

 All code runs inside transactions.

4

 This is a logical view of the situation.

 The state of the QUA might be distributed and

temporarily inconsistent.

5

Model Assumptions

QUA

eventually

consistent

Query-Update Interface & Automaton

A query-update interface is a tuple 𝑄, 𝑉, 𝑈 where

 𝑄 is a set of query operations.

 𝑉 is a set of values returned by queries.

 𝑈 is a set of update operations.

Definition

A query-update automaton (QUA) for interface 𝑄, 𝑉, 𝑈 is a

tuple (𝑆, 𝑠0) together with an interpretation, where

 𝑆 is a set of states

 𝑠0 is the initial state

 𝑞# is an interpretation of query 𝑞 ∈ 𝑄 as a function 𝑆 → 𝑉

 𝑢# is an interpretation of command 𝑢 ∈ 𝑄 as a function 𝑆 → 𝑆

Definition

6

Histories

A history 𝐻 is a map that maps each client 𝑐 ∈ 𝐶 to a finite

or infinite sequence 𝐻(𝑐) of following events:

 𝑢 ∈ 𝑈 is an update issued by the client.

 (𝑞, 𝑣) represents a query with its return value.

 yield commits transactions.

Definition

CLIENT #1

x := load(a);
store(b, x);
yield;
y := load(b);
store(a, y);
yield;

CLIENT #2

store(c, 5);
yield;
i := load(c);
store(c, i+2);
yield;

Example:

7

Consistency Models

 Sequential Consistency:

“The result of any execution is the same as if the operations

of all the processors were executed in some sequential

order, while retaining the program order.”

 Eventual Consistency:

“If no new updates are made to a data object, eventually all

accesses will return a consistent value.”

8

History

Partial order Total order

9

Enhance History with Additional Orders

CLIENT #1 CLIENT #2 CLIENT #3

Sequentially Consistent History

 Find a single partial order < over all events in a given

history, with the following properties:

 Compatibility with program order.

 Past events are totally ordered.

 Transactions are atomic.

 Transactions are executed in isolation.

 Committed transactions are eventually delivered to all

participants.

Sequential consistency does not tolerate temporary

network partitions!

10

Eventually Consistent History

 Instead of one partial order, we try to find two:

 Visibility order <𝑣

 Arbitration order <𝑎

 The visibility order defines which events’ effects are

visible to which other events.

 The arbitration order defines the relative order of past

events.

Eventual consistency tolerates temporary network

partitions!

11

Eventual Consistency in Related Work

 In order to arbitrate events, two common approaches

exist:

 Use timestamps, actual or logical.

 Make updates commutative.

 This paper suggests a different approach, which does

not require any of the above.

 Main contribution of the paper.

12

Write Stabilization Problem

Robinson Bob Alice

update();
yield;

update();
yield;

Repeat 1000x:
update();
yield;

Cannot stabilize!

Repeat 1000x:
update();
yield;

Cannot stabilize!

update();
yield;

Robinson reconnects!

Robinson disconnects!

Solution:

Simply order Robinson’s update after all the others!

13

Perform

important

update!

Revision Diagrams

 A definition of Eventual Consistency does not by itself

give guidelines as to how to build a system that is

eventually consistent.

 That’s why Revision Diagrams are introduced.

 Examples:

14

Revisions

 Revisions are logical replicas of the state.

 Clients work with one revision at a time, and can

perform operations on it.

 Reconciliation happens during a so-called join

operation between two revisions.

15

16

Revision Diagram: Construction Rules

𝑡

𝑥

Join

𝑡′ 𝑡

𝑥

Fork

𝑦

𝑥

𝑡

Query, Update

Vertices

Directed edge

Terminals 𝑡

 Start with root vertex as the only terminal, and then:

 In order for revision diagrams to be eventually

consistent, the join condition needs to be satisfied.

 This establishes important validity conditions and is

needed for the proof of the upcoming theorem.

17

Join Condition

Join condition: The vertex that forked the joined revision

must reach the join vertex

Definition

Example of non-satisfied Join Condition

18

Fork

Join

Join revisions

Graph Properties of Revision Diagrams

 Vertices of the same

revision have the

same 𝒙-coordinate.

 Fork vertices spawn

new revisions to the

right.

 Join vertices merge

revisions coming

from the right.

19

𝒙
0 1 2

Root vertex

Root path

(no joins)

20

Effects of the Vertices

For any vertex 𝑥, we let the effect of 𝑥 be a function

𝑥°: 𝑆 → 𝑆 defined inductively as follows:

 If 𝑥 is a start, fork or query vertex, there is no effect.

 If 𝑥 is an update vertex for some update operation,

then the effect is that update.

 If 𝑥 is a join vertex, then the effect is the

composition of all effects in the joined revision.

Definition

21

Update Effects

𝑙𝑜𝑎𝑑 𝑎 #(𝑠𝑡𝑜𝑟𝑒 𝑏, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 1 # 𝑠0) = 2

𝑠0

Witness for

22

Revision Diagrams  Histories

CLIENT #1

x := load(a);
store(b, x);
yield;
y := load(b);
store(a, y);
yield;

CLIENT #2

store(c, 5);
yield;
i := load(c);
store(c, i+2);
yield;

History Revision Diagram

revision-consistent

23

Requirements of Witness Diagrams

Root vertex

Root path

(no joins)

 Query events match the path-

result.

 Successive non-yield operations

of the same client are connected

by a vertical edge.

 The beginning of a transaction

must be reachable from the end

of the previous transaction of the

same client.

 This would mean that the operation associated to this

vertex could starve, i.e. could not eventually be

delivered.

24

Neglected Vertices

Image: © http://www.alternativedamm.de/

A vertex 𝑥 is neglected, if there exists an infinite number

of vertices 𝑦 such that there is no path from 𝑥 to 𝑦.

Definition

25

Theorem

Let 𝐻 be a history. If there exists a witness diagram for 𝐻

such that no committed events are neglected, then 𝐻

is eventually consistent.

Theorem

 In the paper, a proof is included.

 Note that the converse is not true, i.e. if 𝐻 is eventually

consistent, there might not exist a witness diagram for

it.

26

System Implementation

Single Synchronous Server Model

 Single server

 Multiple clients

 The server can spawn clients

 Clients can join the server

 Transactions are committed

by clients by joining and forking

again.

Pro: Simple and intuitive

Contra: Clients block if they

have no connection

Server Pool Model

 Multiple servers

 Multiple clients

 Servers can spawn clients

 Clients can join servers

 Servers can join servers

 Need vector clocks to ensure

the join condition

Pro: Better scalability;

No blocking

Contra: Complex

 Two eventually consistent systems might look like:

 Unique use of revision diagrams to determine both

arbitration and visibility.

 Revision Diagrams are simple to construct and can be

visualized easily.

 This eases system implementation and understanding.

27

Contribution

 Extend study of this programming model.

 Are there stronger consistency guarantees possible

for subclasses of eventual consistent transactions?

 This work had an impact on:

 Cloud types for eventual consistency 1

 Proposes the use of specialized cloud data types.

 Library abstraction for C/C++ concurrency 2

 Proposes a criterion for sound library abstraction in the new

C11 and C++11 memory model.

28

Future Work and Impact

1 Microsoft Research
2 Mark Batty, Mike Dodds, Alexey Gotsman

