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Goal

= Eventual consistency in a distributed system is nice. It
allows temporarily disconnected replicas to remain fully

available.

= Find answers to the questions:

1. How to provide consistency guarantees that are as
strong as possible without losing lazy consensus?

2. How to effectively understand and implement systems
that provide these guarantees?
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Model Assumptions

= Distributed system.
= Multiple participants (clients).

= One logical database, referred to as a
Query-Update-Automaton (QUA).

= Clients issue eventually consistent transactions, that
cannot fail and never roll back.

= All code runs inside transactions.



Model Assumptions
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= This is a logical view of the situation.

= The state of the QUA might be distributed and
temporarily inconsistent.



Query-Update Interface & Automaton

A query-update interface is a tuple (Q,V,U) where

= () is a set of query operations.
» |/ Is a set of values returned by queries.
» [J is a set of update operations.

A query-update automaton (QUA) for interface (Q,V,U)is a
tuple (S, sy) together with an interpretation, where

= 5 is a set of states

" 5, Is the initial state

= g is an interpretation of query g € Q as a function S - V

= u* is aninterpretation of command u € Q as a function S —» S




Histories

A history H is a map that maps each client ¢ € C to a finite
or infinite sequence H(c) of following events:

= u €U Isanupdate issued by the client.
= (q,v) represents aquery with its return value.
* yield commits transactions.

Example: CLIENT #1 CLIENT #2
x := load(a); store(c, 5);
store(b, x); yield;
yield; i := load(c);
y := load(b); store(c, i+2);
store(a, y); yield;

yield;



Consistency Models

= Sequential Consistency:

“The result of any execution is the same as if the operations
of all the processors were executed in some sequential
order, while retaining the program order.”

= Eventual Consistency:

“If no new updates are made to a data object, eventually all
accesses will return a consistent value.”



Enhance History with Additional Orders
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Seqguentially Consistent History

= Find a single partial order < over all events in a given
history, with the following properties:

= Compatibility with program order.

= Past events are totally ordered.

= Transactions are atomic.

= Transactions are executed in isolation.

= Committed transactions are eventually delivered to all
participants.

Seguential consistency does not tolerate temporary

network partitions!
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Eventually Consistent History

= |nstead of one partial order, we try to find two:

* Visibility order <,
= Arbitration order <,

= The visibility order defines which events’ effects are
visible to which other events.

= The arbitration order defines the relative order of past
events.

Eventual consistency tolerates temporary network

partitions!
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Eventual Consistency in Related Work

= |n order to arbitrate events, two common approaches
exist:

» Use timestamps, actual or logical.
» Make updates commutative.

= This paper suggests a different approach, which does
not require any of the above.

= Main contribution of the paper.
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Write Stabilization Problem

Alice Bob Robinson
update(); update(); update();
yield; yield; yield;
Robinson disconnects!
Perform
Repeat 1000x: Repeat 1000x: lmpdortarllt
update(); update(); update’
yield; yield; =
Cannot stabilize! Cannot stabilize!

Solution:

Simply order Robinson’s update after all the others!
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Revision Diagrams

= A definition of Eventual Consistency does not by itself
give guidelines as to how to build a system that is
eventually consistent.

= That's why Revision Diagrams are introduced.
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Revisions

= Revisions are logical replicas of the state.

= Clients work with one revision at a time, and can
perform operations on it.

= Reconciliation happens during a so-called join
operation between two revisions.
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Revision Diagram: Construction Rules

= Start with root vertex as the only terminal, and then:

Query, Update Fork Join
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—> Directed edge
t Terminals

16



Join Condition

= |n order for revision diagrams to be eventually
consistent, the join condition needs to be satisfied.

Join condition: The vertex that forked the joined revision
must reach the join vertex

= This establishes important validity conditions and is
needed for the proof of the upcoming theorem.
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Example of non-satisfied Join Condition




Graph Properties of Revision Diagrams

- | Root vertex

\ = Vertices of the same
revision have the
{ same x-coordinate.
s = Fork vertices spawn
new revisions to the

N right.

¢/ : Joir_l \_/ertices merge
; revisions coming
/ from the right.
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Effects of the Vertices

For any vertex x, we let the effect of x be a function
x :S — S defined inductively as follows:

» |f x Iis a start, fork or query vertex, there is no effect.

* |f x iIsan update vertex for some update operation,
then the effect is that update.

* |f x Iis a join vertex, then the effect is the
composition of all effects in the joined revision.
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Update Effects
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load(a)*(store(b, 2)* (store(a, ik (Store(a, 1)#(50)))) =2
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Revision Diagrams < Histories

History
CLIENT #1
X := load(a);

store(b, x);

yield;

y := load(b);
store(a, y);

yield;

CLTENT #2

store(c, 5);
yield;

i := load(c);
store(c, i+2);
yield;
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Requirements of Witness Diagrams

Root path
(no joins)

- | Root vertex

A
|
L
B

T
V_J

= Query events match the path-
result.

= Successive non-yield operations
of the same client are connected
by a vertical edge.

= The beginning of a transaction
must be reachable from the end
of the previous transaction of the
same client.
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Neglected Vertices

A vertex x Is neglected, if there exists an infinite number
of vertices y such that there is no path from x to y.

= This would mean that the operation associated to this
vertex could starve, i.e. could not eventually be
delivered.
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Theorem

Let H be a history. If there exists a witness diagram for H
such that no committed events are neglected, then H
IS eventually consistent.

= |n the paper, a proof is included.

= Note that the converse is not true, i.e. if H Is eventually
consistent, there might not exist a withess diagram for
It.
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System Implementation

= Two eventually consistent systems might look like:

Single Synchronous Server Model

Single server

Multiple clients

The server can spawn clients
Clients can join the server

Transactions are committed
by clients by joining and forking
again.

Pro:
Contra:

Simple and intuitive

Clients block if they
have no connection

Server Pool Model

Multiple servers

Multiple clients

Servers can spawn clients
Clients can join servers
Servers can join servers

Need vector clocks to ensure
the join condition

Pro: Better scalability;
No blocking
Contra:  Complex
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Contribution

= Unigque use of revision diagrams to determine both
arbitration and visibility.

= Revision Diagrams are simple to construct and can be
visualized easily.

* This eases system implementation and understanding.
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Future Work and Impact

= Extend study of this programming model.

= Are there stronger consistency guarantees possible
for subclasses of eventual consistent transactions?

= This work had an impact on:

= Cloud types for eventual consistency *
— Proposes the use of specialized cloud data types.

= Library abstraction for C/C++ concurrency 2

— Proposes a criterion for sound library abstraction in the new
C11 and C++11 memory model.

1 Microsoft Research
2 Mark Batty, Mike Dodds, Alexey Gotsman
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