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 Eventual consistency in a distributed system is nice. It 

allows temporarily disconnected replicas to remain fully 

available. 

 Find answers to the questions: 

1. How to provide consistency guarantees that are as 

strong as possible without losing lazy consensus? 

 

2. How to effectively understand and implement systems 

that provide these guarantees? 
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Outline 

HOT 



Model Assumptions 

 Distributed system. 

 Multiple participants (clients). 

 One logical database, referred to as a  

Query-Update-Automaton (QUA). 

 Clients issue eventually consistent transactions, that 

cannot fail and never roll back. 

 All code runs inside transactions. 
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 This is a logical view of the situation. 

 The state of the QUA might be distributed and 

temporarily inconsistent. 
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Model Assumptions 

QUA 

eventually 

consistent 



Query-Update Interface & Automaton 

A query-update interface is a tuple 𝑄, 𝑉, 𝑈  where 

 𝑄 is a set of query operations. 

 𝑉 is a set of values returned by queries. 

 𝑈 is a set of update operations. 

 

Definition 

A query-update automaton (QUA) for interface 𝑄, 𝑉, 𝑈  is a 

tuple (𝑆, 𝑠0) together with an interpretation, where 

 𝑆 is a set of states 

 𝑠0 is the initial state 

 𝑞# is an interpretation of query 𝑞 ∈ 𝑄 as a function 𝑆 → 𝑉 

 𝑢# is an interpretation of command 𝑢 ∈ 𝑄 as a function 𝑆 → 𝑆 

 

 

Definition 
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Histories 

A history 𝐻 is a map that maps each client 𝑐 ∈ 𝐶 to a finite 

or infinite sequence 𝐻(𝑐) of following events: 

 𝑢 ∈ 𝑈 is an update issued by the client. 

 (𝑞, 𝑣) represents a query  with its return value. 

 yield commits transactions. 
 

Definition 

CLIENT #1 

x := load(a); 
store(b, x); 
yield; 
y := load(b); 
store(a, y); 
yield; 

CLIENT #2 

store(c, 5); 
yield; 
i := load(c); 
store(c, i+2); 
yield; 

Example: 
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Consistency Models 

 Sequential Consistency: 

“The result of any execution is the same as if the operations 

of all the processors were executed in some sequential 

order, while retaining the program order.” 

 

 Eventual Consistency: 

“If no new updates are made to a data object, eventually all 

accesses will return a consistent value.” 
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History 

Partial order Total order 
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Enhance History with Additional Orders 

CLIENT #1 CLIENT #2 CLIENT #3 



Sequentially Consistent History 

 Find a single partial order <  over all events in a given 

history, with the following properties: 

 Compatibility with program order. 

 Past events are totally ordered. 

 Transactions are atomic. 

 Transactions are executed in isolation. 

 Committed transactions are eventually delivered to all 

participants. 

 

Sequential consistency does not tolerate temporary 

network partitions! 
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Eventually Consistent History 

 Instead of one partial order, we try to find two: 

 Visibility order <𝑣 

 Arbitration order <𝑎 

 

 The visibility order defines which events’ effects are 

visible to which other events. 

 The arbitration order defines the relative order of past 

events. 

Eventual consistency tolerates temporary network 

partitions! 
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Eventual Consistency in Related Work 

 In order to arbitrate events, two common approaches 

exist: 

 Use timestamps, actual or logical. 

 Make updates commutative. 

 

 This paper suggests a different approach, which does 

not require any of the above. 

 Main contribution of the paper. 

12 



Write Stabilization Problem 

Robinson Bob Alice 

update(); 
yield; 

update(); 
yield; 

Repeat 1000x: 
update(); 
yield; 
 

Cannot stabilize! 

Repeat 1000x: 
update(); 
yield; 
 

Cannot stabilize! 

update(); 
yield; 

Robinson reconnects! 

Robinson disconnects! 

Solution: 

Simply order Robinson’s update after all the others! 
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Perform 

important 

update! 



Revision Diagrams 

 A definition of Eventual Consistency does not by itself 

give guidelines as to how to build a system that is 

eventually consistent. 

 That’s why Revision Diagrams are introduced. 

 Examples: 
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Revisions 

 Revisions are logical replicas of the state. 

 Clients work with one revision at a time, and can 

perform operations on it. 

 Reconciliation happens during a so-called join 

operation between two revisions. 
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Revision Diagram: Construction Rules 

𝑡 

𝑥 

Join 

𝑡′ 𝑡 

𝑥 

Fork 

𝑦 

𝑥 

𝑡 

Query, Update 

Vertices 

Directed edge 

Terminals 𝑡 

 Start with root vertex as the only terminal, and then: 

 



 In order for revision diagrams to be eventually 

consistent, the join condition needs to be satisfied. 

 

 

 

 

 This establishes important validity conditions and is 

needed for the proof of the upcoming theorem. 
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Join Condition 

Join condition: The vertex that forked the joined revision 

must reach the join vertex 

Definition 



Example of non-satisfied Join Condition 
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Fork 

Join 

Join revisions 



Graph Properties of Revision Diagrams 

 Vertices of the same 

revision have the 

same 𝒙-coordinate. 

 Fork vertices spawn 

new revisions to the 

right. 

 Join vertices merge 

revisions coming 

from the right. 
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𝒙 
0 1 2 

Root vertex 

Root path 

(no joins) 
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Effects of the Vertices 

For any vertex 𝑥, we let the effect of 𝑥 be a function 

𝑥°: 𝑆 → 𝑆 defined inductively as follows: 

 If 𝑥 is a start, fork or query vertex, there is no effect. 

 If 𝑥 is an update vertex for some update operation, 

then the effect is that update. 

 If 𝑥 is a join vertex, then the effect is the 

composition of all effects in the joined revision. 

  

Definition 
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Update Effects 

 
 

𝑙𝑜𝑎𝑑 𝑎 #(𝑠𝑡𝑜𝑟𝑒 𝑏, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 1 # 𝑠0 ) = 2 

𝑠0 



Witness for 
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Revision Diagrams  Histories 

CLIENT #1 

x := load(a); 
store(b, x); 
yield; 
y := load(b); 
store(a, y); 
yield; 

CLIENT #2 

store(c, 5); 
yield; 
i := load(c); 
store(c, i+2); 
yield; 

History Revision Diagram 

revision-consistent 
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Requirements of Witness Diagrams 

Root vertex 

Root path 

(no joins) 

 Query events match the path-

result. 

 Successive non-yield operations 

of the same client are connected 

by a vertical edge. 

 The beginning of a transaction 

must be reachable from the end 

of the previous transaction of the 

same client. 



 This would mean that the operation associated to this 

vertex could starve, i.e. could not eventually be 

delivered. 
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Neglected Vertices 

Image: © http://www.alternativedamm.de/ 

A vertex 𝑥 is neglected, if there exists an infinite number 

of vertices 𝑦 such that there is no path from 𝑥 to 𝑦. 

Definition 



25 

Theorem 

Let 𝐻 be a history. If there exists a witness diagram for 𝐻 

such that no committed events are neglected, then 𝐻 

is eventually consistent.  

Theorem 

 In the paper, a proof is included. 

 Note that the converse is not true, i.e. if 𝐻 is eventually 

consistent, there might not exist a witness diagram for 

it. 
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System Implementation 

Single Synchronous Server Model 

 Single server 

 Multiple clients 

 The server can spawn clients 

 Clients can join the server 

 Transactions are committed 

by clients by joining and forking 

again. 

Pro: Simple and intuitive 

Contra: Clients block if they 

have no connection 

Server Pool Model 

 Multiple servers 

 Multiple clients 

 Servers can spawn clients 

 Clients can join servers 

 Servers can join servers 

 Need vector clocks to ensure 

the join condition 

 

 

Pro: Better scalability; 

No blocking 

Contra: Complex 

 Two eventually consistent systems might look like: 

 



 Unique use of revision diagrams to determine both 

arbitration and visibility. 

 

 Revision Diagrams are simple to construct and can be 

visualized easily. 

 This eases system implementation and understanding. 
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Contribution 



 Extend study of this programming model. 

 Are there stronger consistency guarantees possible 

for subclasses of eventual consistent transactions? 

 

 This work had an impact on: 

 Cloud types for eventual consistency 1 

 Proposes the use of specialized cloud data types. 

 Library abstraction for C/C++ concurrency 2 

 Proposes a criterion for sound library abstraction in the new 

C11 and C++11 memory model. 
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Future Work and Impact 
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