
Eventually Consistent

Transactions

Sebastian Burckhardt1, Daan Leijen1,
Manuel Fähndrich1, and Mooley Sagiv2

presented by Dominic Meier

1 Microsoft Research
2 Tel-Aviv University 4/17/2013

 Eventual consistency in a distributed system is nice. It

allows temporarily disconnected replicas to remain fully

available.

 Find answers to the questions:

1. How to provide consistency guarantees that are as

strong as possible without losing lazy consensus?

2. How to effectively understand and implement systems

that provide these guarantees?

2

Goal

 Model Assumptions

 Important Definitions

 Sequential vs. Eventual Consistency

 Revision Consistency

 Construction and Properties of Revision Diagrams

 Theorem: Revision Consistency Eventual Consistency

 Conclusion and Future Work

 3

Outline

HOT

Model Assumptions

 Distributed system.

 Multiple participants (clients).

 One logical database, referred to as a

Query-Update-Automaton (QUA).

 Clients issue eventually consistent transactions, that

cannot fail and never roll back.

 All code runs inside transactions.

4

 This is a logical view of the situation.

 The state of the QUA might be distributed and

temporarily inconsistent.

5

Model Assumptions

QUA

eventually

consistent

Query-Update Interface & Automaton

A query-update interface is a tuple 𝑄, 𝑉, 𝑈 where

 𝑄 is a set of query operations.

 𝑉 is a set of values returned by queries.

 𝑈 is a set of update operations.

Definition

A query-update automaton (QUA) for interface 𝑄, 𝑉, 𝑈 is a

tuple (𝑆, 𝑠0) together with an interpretation, where

 𝑆 is a set of states

 𝑠0 is the initial state

 𝑞# is an interpretation of query 𝑞 ∈ 𝑄 as a function 𝑆 → 𝑉

 𝑢# is an interpretation of command 𝑢 ∈ 𝑄 as a function 𝑆 → 𝑆

Definition

6

Histories

A history 𝐻 is a map that maps each client 𝑐 ∈ 𝐶 to a finite

or infinite sequence 𝐻(𝑐) of following events:

 𝑢 ∈ 𝑈 is an update issued by the client.

 (𝑞, 𝑣) represents a query with its return value.

 yield commits transactions.

Definition

CLIENT #1

x := load(a);
store(b, x);
yield;
y := load(b);
store(a, y);
yield;

CLIENT #2

store(c, 5);
yield;
i := load(c);
store(c, i+2);
yield;

Example:

7

Consistency Models

 Sequential Consistency:

“The result of any execution is the same as if the operations

of all the processors were executed in some sequential

order, while retaining the program order.”

 Eventual Consistency:

“If no new updates are made to a data object, eventually all

accesses will return a consistent value.”

8

History

Partial order Total order

9

Enhance History with Additional Orders

CLIENT #1 CLIENT #2 CLIENT #3

Sequentially Consistent History

 Find a single partial order < over all events in a given

history, with the following properties:

 Compatibility with program order.

 Past events are totally ordered.

 Transactions are atomic.

 Transactions are executed in isolation.

 Committed transactions are eventually delivered to all

participants.

Sequential consistency does not tolerate temporary

network partitions!

10

Eventually Consistent History

 Instead of one partial order, we try to find two:

 Visibility order <𝑣

 Arbitration order <𝑎

 The visibility order defines which events’ effects are

visible to which other events.

 The arbitration order defines the relative order of past

events.

Eventual consistency tolerates temporary network

partitions!

11

Eventual Consistency in Related Work

 In order to arbitrate events, two common approaches

exist:

 Use timestamps, actual or logical.

 Make updates commutative.

 This paper suggests a different approach, which does

not require any of the above.

 Main contribution of the paper.

12

Write Stabilization Problem

Robinson Bob Alice

update();
yield;

update();
yield;

Repeat 1000x:
update();
yield;

Cannot stabilize!

Repeat 1000x:
update();
yield;

Cannot stabilize!

update();
yield;

Robinson reconnects!

Robinson disconnects!

Solution:

Simply order Robinson’s update after all the others!

13

Perform

important

update!

Revision Diagrams

 A definition of Eventual Consistency does not by itself

give guidelines as to how to build a system that is

eventually consistent.

 That’s why Revision Diagrams are introduced.

 Examples:

14

Revisions

 Revisions are logical replicas of the state.

 Clients work with one revision at a time, and can

perform operations on it.

 Reconciliation happens during a so-called join

operation between two revisions.

15

16

Revision Diagram: Construction Rules

𝑡

𝑥

Join

𝑡′ 𝑡

𝑥

Fork

𝑦

𝑥

𝑡

Query, Update

Vertices

Directed edge

Terminals 𝑡

 Start with root vertex as the only terminal, and then:

 In order for revision diagrams to be eventually

consistent, the join condition needs to be satisfied.

 This establishes important validity conditions and is

needed for the proof of the upcoming theorem.

17

Join Condition

Join condition: The vertex that forked the joined revision

must reach the join vertex

Definition

Example of non-satisfied Join Condition

18

Fork

Join

Join revisions

Graph Properties of Revision Diagrams

 Vertices of the same

revision have the

same 𝒙-coordinate.

 Fork vertices spawn

new revisions to the

right.

 Join vertices merge

revisions coming

from the right.

19

𝒙
0 1 2

Root vertex

Root path

(no joins)

20

Effects of the Vertices

For any vertex 𝑥, we let the effect of 𝑥 be a function

𝑥°: 𝑆 → 𝑆 defined inductively as follows:

 If 𝑥 is a start, fork or query vertex, there is no effect.

 If 𝑥 is an update vertex for some update operation,

then the effect is that update.

 If 𝑥 is a join vertex, then the effect is the

composition of all effects in the joined revision.

Definition

21

Update Effects

𝑙𝑜𝑎𝑑 𝑎 #(𝑠𝑡𝑜𝑟𝑒 𝑏, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 2 # 𝑠𝑡𝑜𝑟𝑒 𝑎, 1 # 𝑠0) = 2

𝑠0

Witness for

22

Revision Diagrams Histories

CLIENT #1

x := load(a);
store(b, x);
yield;
y := load(b);
store(a, y);
yield;

CLIENT #2

store(c, 5);
yield;
i := load(c);
store(c, i+2);
yield;

History Revision Diagram

revision-consistent

23

Requirements of Witness Diagrams

Root vertex

Root path

(no joins)

 Query events match the path-

result.

 Successive non-yield operations

of the same client are connected

by a vertical edge.

 The beginning of a transaction

must be reachable from the end

of the previous transaction of the

same client.

 This would mean that the operation associated to this

vertex could starve, i.e. could not eventually be

delivered.

24

Neglected Vertices

Image: © http://www.alternativedamm.de/

A vertex 𝑥 is neglected, if there exists an infinite number

of vertices 𝑦 such that there is no path from 𝑥 to 𝑦.

Definition

25

Theorem

Let 𝐻 be a history. If there exists a witness diagram for 𝐻

such that no committed events are neglected, then 𝐻

is eventually consistent.

Theorem

 In the paper, a proof is included.

 Note that the converse is not true, i.e. if 𝐻 is eventually

consistent, there might not exist a witness diagram for

it.

26

System Implementation

Single Synchronous Server Model

 Single server

 Multiple clients

 The server can spawn clients

 Clients can join the server

 Transactions are committed

by clients by joining and forking

again.

Pro: Simple and intuitive

Contra: Clients block if they

have no connection

Server Pool Model

 Multiple servers

 Multiple clients

 Servers can spawn clients

 Clients can join servers

 Servers can join servers

 Need vector clocks to ensure

the join condition

Pro: Better scalability;

No blocking

Contra: Complex

 Two eventually consistent systems might look like:

 Unique use of revision diagrams to determine both

arbitration and visibility.

 Revision Diagrams are simple to construct and can be

visualized easily.

 This eases system implementation and understanding.

27

Contribution

 Extend study of this programming model.

 Are there stronger consistency guarantees possible

for subclasses of eventual consistent transactions?

 This work had an impact on:

 Cloud types for eventual consistency 1

 Proposes the use of specialized cloud data types.

 Library abstraction for C/C++ concurrency 2

 Proposes a criterion for sound library abstraction in the new

C11 and C++11 memory model.

28

Future Work and Impact

1 Microsoft Research
2 Mark Batty, Mike Dodds, Alexey Gotsman

