
Fully Automatic and Precise
Detection of Thread Safety

Violations

Authors:

Michael Pradel & Thomas R. Gross

2012

Motivation

• Generally, writing software is fun

• Coding (unit) tests however is boring

• Writing concurrent programs is challenging

• Writing effective tests that reveal concurrency
bugs is even more challenging

Minimal effort required

• Input:

– The class under test (CUT)

– (Optional) Auxiliary classes and libraries that the
CUT depends on

• Output:

– True, non-redundant, concurrency bug reports

Method Overview

1. Generate concurrent test

2. Execute test repeatedly

3. Check whether thread safety violation caused
a test to fail

4. Go back go #1

Test generation

• Goal: generate tests likely to
expose concurrency bugs
 Let the threads share state

• Method: split each test into
a prefix p and suffixes
s1,...,sn
– The prefix creates an instance

of the CUT and then “grows”
it by calling its methods

– The suffixes make further
calls to the same CUT
instance

p

s1 ... sn

thread 1

thread 1 ... thread n

Test generation

• To instantiate the CUT, the generator randomly selects
a method that has the CUT as a return type.
– This includes the constructor of the class.
– If this method requires parameters, it will attempt to

generate them automatically.

• Random CUT methods are then selected to “grow” and
test the CUT instance.
– A field access may also be selected.
– Return values from method calls are stored in variables,

which may be used as parameter values for future calls.

• Code sequences which, when run sequentially, result in
an exception are discarded.

Thread safety

• Difficult to prove, easier to disprove.

– We just need to find a counter-example

• Thread safety is a fuzzy term, many definitions

• The one adopted by the authors:

– “A class is said to be thread-safe if multiple
threads can use it without synchronization and if
the behavior observed by each thread is
equivalent to a linearization of all calls that
maintain the order of calls in each thread”

???

Equivalent executions

• Authors’ definition:
– Two executions e1 and e2 are equivalent if

• Neither e1 nor e2 results in an exception or a deadlock
or

• both e1 and e2 fail for the same reason

• Very liberal, but practical definition
– It errs on the side of caution to avoid false

positives

– A study of 105 real-world concurrency bugs found
that 62% of them lead to a crash or a deadlock

Thread safety oracle

• If a test results in an exception or a deadlock
the oracle iterates over all valid linearizations
of the test and checks whether a sequential
execution of it causes the exact same failure

• No such linearization found

 => concurrency bug!

Evaluation

• The authors analyzed classes from six popular
libraries, including the Java Standard library
and Apache Commons DBCP

• Found 15 bugs in classes marked as thread
safe
– 6 were previously unknown

– 12 bugs revealed by implicit exceptions

– Time to find bugs ranged from a few seconds to
over 8 hours

Concluding remarks

• The good
– Full automation of test generation, execution and analysis

is a very, very good thing
– No false positives or duplicate error reports
– Effective

• The bad
– Current implementation is not terribly efficient
– Doesn‘t catch “subtle” bugs
– Humans don‘t program uniformly at random

Full source code and on-line version available at
www.thread-safe.org

http://www.thread-safe.org/
http://www.thread-safe.org/
http://www.thread-safe.org/

Questions?

