Fully Automatic and Precise
Detection of Thread Safety
Violations
Authors:

Michael Pradel & Thomas R. Gross
2012

Motivation

Generally, writing software is fun
Coding (unit) tests however is boring
Writing concurrent programs is challenging

Writing effective tests that reveal concurrency
bugs is even more challenging

Minimal effort required

* |nput:
— The class under test (CUT)

— (Optional) Auxiliary classes and libraries that the
CUT depends on

* Qutput:

— True, non-redundant, concurrency bug reports

Method Overview

1. Generate concurrent test

2. Execute test repeatedly

3. Check whether thread safety violation caused

a test to fail
. Go back go #1

Test generation

* Goal: generate tests likely to
expose concurrency bugs thread 1

== | et the threads share state n
* Method: split each test into , : ,

a prefix p and suffixes o |

Si--sS,
— The prefix creates an instance

of the CUT and then “grows”
it by calling its methods

— The suffixes make further
calls to the same CUT
instance

thread 1 thread n

Test generation

* To instantiate the CUT, the generator randomly selects
a method that has the CUT as a return type.

— This includes the constructor of the class.

— If this method requires parameters, it will attempt to
generate them automatically.

« Random CUT methods are then selected to “grow” and
test the CUT instance.

— A field access may also be selected.

— Return values from method calls are stored in variables,
which may be used as parameter values for future calls.

* Code sequences which, when run sequentially, result in
an exception are discarded.

Thread safety

* Difficult to prove, easier to disprove.

— We just need to find a counter-example
* Thread safety is a fuzzy term, many definitions

 The one adopted by the authors:

— “A class is said to be thread-safe if multiple
threads can use it without synchronization and if
the behavior observed by each thread is
equivalent to a linearization of all calls that
maintain the order of calls in each thread”

Equivalent executions

e Authors’ definition:

— Two executions e, and e, are equivalent if

* Neither e, nor e, results in an exception or a deadlock
or

* both e, and e, fail for the same reason

* Very liberal, but practical definition

— It errs on the side of caution to avoid false
positives

— A study of 105 real-world concurrency bugs found
that 62% of them lead to a crash or a deadlock

Thread safety oracle

* |f a test results in an exception or a deadlock
the oracle iterates over all valid linearizations
of the test and checks whether a sequential
execution of it causes the exact same failure

* No such linearization found

=> concurrency bug!

Evaluation

* The authors analyzed classes from six popular

libraries, including the Java Standard library
and Apache Commons DBCP

* Found 15 bugs in classes marked as thread
safe

— 6 were previously unknown
— 12 bugs revealed by implicit exceptions

— Time to find bugs ranged from a few seconds to
over 8 hours

StringBuffer sb = new StringBuffer("abc");
Thread I | Thread 2

f y

sb.insert (1, sb); sb.deleteCharAt(0) ;

Result: IndexOutOfBoundsException in Thread 1

MAKE GIFS AT GIFSOUP.COM

Concluding remarks

 The good

— Full automation of test generation, execution and analysis
is a very, very good thing

— No false positives or duplicate error reports
— Effective

e The bad

— Current implementation is not terribly efficient
— Doesn‘t catch “subtle” bugs
— Humans don‘t program uniformly at random

Full source code and on-line version available at
www.thread-safe.org

http://www.thread-safe.org/
http://www.thread-safe.org/
http://www.thread-safe.org/

Questions?

Algorithm 1 Returns a concurrent test (p, s1, s2)

. P: set of prefixes = global variables
: M: maps a prefix to suffixes
T set of ready-to-use tests
if 7] > 0 then
return randRemove(T)
if |P| < maxPrefires then > create a new prefix
p + instantiateCUTT ask(empty call sequence)
if p = failed then
if P = () then
fail(”cannot instantiate CUT™)
else
p < randl ake(P)
else
for i + 1, maxzStateChangerTries do
Pext + callCUTTask(p)
if pext # failed then
P — Pext
P« PuU{p}

- else

p + randTake(P)

. s1 + empty call sequence r> create a new suffix
. for ¢ < 1, maxzCUTCallTries do

$1,ext + callCUTTask(sy,p)
if 81 cz¢ 7 failed then
81 £ S1,ext

: M(p) « M(p) U {s1}
: for all s € M(p) do r> one test for each pair of suffixes

T < TU{(p,s1,s2)}

. return rand Remove(T)

Algorithm 2 Checks whether a test (p, s1, s2) exposes a thread
safety bug

repeat
E(p.s,.s0) < execute(p, s1, s2)
<)) then

1:

: P,

3 if failed(e(, s,
4 seqFailed + false

5 foralll € L(p, s1,s2) do

6: if seqF ailed = false then

7: e; < execute(l)

8 if failed(er) N sameF ailure(e(, <, <), €1) then
9 seqFailed < true

0 if seqlailed = false then

I: report bug e, , s,) and exit

0

until maxrConcFE recs reached

10:
|
|

class StringBuffer {
StringBuffer(String s) A
// initialize with the given String
}
synchronized void deleteCharAt(int index) A
// modify while holding the lock
}
void insert(int dstOffset, CharSequence s) {
int 1 = s.length();
// BUG: 1 may change
this.insert(dst0Offset, s, 0, 1);
}
synchronized void insert(int dstOffset,
CharSequence s, int start, int end) {
// modify while holding the lock
}
+

