
Automated Fixing of Programs with

Contracts

Yi Wei, Yu Pei, Carlo A. Furia, Lucas S. Silva, Stefan Buchholz,
Bertrand Meyer, Andreas Zeller

Presented by Christine Zeller

Motivation

 Programming is not just about writing code

 Find errors

 Fix errors

 Automating these steps is helpful

 Automatic testing tools help finding errors

 What about fixing them?

2

Background

3

 AutoTest
 B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, E. Stapf (2009)

 Automated Testing Framework

 Paper will be presented in this seminar

 Pachika
 V.Dallmeier, A. Zeller, B.Meyer (2009)

 Tool to generate potential fixes for bugs

 Used with failing testcases for Java Programs

AutoFix-E

4

 Find fixes using

 Contracts

 Boolean Query Abstraction

 Plan:

 1) Assess Object State

 2) Construct Fault Profile and Behavioral Model

 3) Generate Candidate Fixes

 4) Validate Fixes

Example

5

 TWO_WAY_SORTED_SET
duplicate(n: INTEGER):like Current

 local

 pos: CURSOR

 counter: INTEGER

 do

 pos := cursor

 Result := new_chain

 Result.finish

 Result.forth

 from

 until

 (counter = n) or else after

 loop

 Result.put_left(item)

 forth

 counter := counter + 1

 end

 go_to(pos)

 end

item has precondition

not before and not

after

Workflow

6

Eiffel

Class

Test

Suite

AutoTest

Fault

Profile

Behavioral

Model
Candidate

Fixes
Valid

Fixes

non-valid fixes

AutoFix-E

Object State

7

 Predicate set P

 Boolean queries

 Complex predicates (implications)

 Mutations of complex predicates

 Collection Π = P ∪ not p p ∈ 𝑃

 Remove redundancies in P using Z3

is_empty after

A B

¬ A B ¬ A ¬ B A ¬ B

Fault Profile

8

 State invariant

 Consider all passing runs

 Infer state invariant 𝐼ℓ
+ for each location ℓ

 Consider all failing runs

 Infer state invariant 𝐼ℓ
− for each location ℓ

 Only up to location of failure

𝐼ℓ = 𝑝 𝑝 ∈ Π ∧ 𝑝 ℎ𝑜𝑙𝑑𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ℓ

Fault Profile: Example

9

 Construct fault profile

 Use tool called Daikon

 Example:

Φℓ = 𝑝 𝑝 ∈ 𝐼ℓ
+ ∧ 𝑝 ∉ 𝐼ℓ

−

before and off

before implies not off

hold only in failing runs

Fault Profile

Behavioral Model

10

 Finite-state automaton representing class’ behaviour

 Extract model from passing runs

 Idea

pre

state

post

state

routine m

Failed

state

Fixed

state

Sequence

of mutators

Behavioral Model: Example

11

is_empty

before

not after

is_empty

not before

after

forth

not is_empty

before

not after

not is_empty

not before

not after

forth

Candidate Fixes

12

 Put everything together

 Predefined templates:

(a) snippet

 old_stmt
(b) if fail then

 snippet

 end

 old_stmt

(c) if not fail then

 old_stmt

 end

(d) if fail then

 snippet

 else

 old_stmt

 end

Candidate Fixes: Example

13

duplicate(n: INTEGER):like Current

 ...

 from

 until

 (counter = n) or else after

 loop

 Result.put_left(item)

 forth

 counter := counter + 1

 end

 go_to(pos)

 end

Candidate Fixes: Example

14

duplicate(n: INTEGER):like Current

 ...

 from

 until

 (counter = n) or else after

 loop

 if before then

 forth

 else

 Result.put_left(item)

 forth

 counter := counter + 1

 end

 end

 go_to(pos)

 end

snippet

Fix Validation

15

 Run all testcases on fixes

 A fix is valid if it passes all failing and passing runs

 Additionally: Ranking

 Static metrics

 Textual change

 Branches introduced

 Dynamic metrics

 Runtime behaviour

Improvement

16

 Linearly constrained assertions

 E.g.

 Require special techniques for fix generation

 Specific schema for candidate fixes

i > 1 and i < count

if not constraint then new_stmt else old_stmt end

Experimental Evaluation

17

 42 Faults from EiffelBase and Gobo

 Average fixing time: 2.6 minutes

 Small study with programmers

 4 of 6 proposed valid fixes were same as programmers’

Future Work

18

 Improve behavior model

 Different fault types

 Find faults in contracts

 Languages without contracts

 Improving ranking metric

 ...

Conclusion

19

 Limitation: all classes used data structure related

 Status from 2010

 New Version of AutoFix developed in 2011

 Different approach: code-based instead of model-based

 Still an open field of research

