Bounded Verification
of Voting Software

Greg Dennis, Kuat Yessenov, Daniel Jackson

[o Evorting

[wting

[Aanning, trials nan-legally binding E-Vating

[] & wwting with EVA This map of electronic voting is based on research conducted by E-Voting.CC and reflects the status quo of

(] = wotng withremetVosing electronic voting at the end of 2011. The information is subject to change and E-Voting.CC can not be held iable

for the correctness of the provided information. The map is the intellectual property of E-Voting.CC. To use this map,
ask for permission (email at office@e-voting.cc) and ensure a correct citation.

- e-voting with EVM and Intemet Voting

I sopped

2011, www.e-voting.cc

Electronic voting machines

e Used in the Netherlands since 1998

* Introduced KOA Remote Voting System in 2004

— Internet voting application
— Java, Open-Source (GPL)
— Main part implemented by LogicaCMG

e Security of Systems (SoS) research group developed
independent tally subsystem

The Problem

* How to verify that the software is correct?

— Electoral systems are highly complex

e Vote-tallying subsystem of KOA
— Formally specified using Java Modeling Language (JML)

— Core partially verified using Extended Static Checker for
Java, ESC/Java2 (47%)

— Boundary unit tests generated using jmlunit (8000)

— 100% coverage not possible in timeframe of project (4
weeks)

Bounded verification

 Examine all executions of a procedure with bounded
— Heap size
— Number of loop unrollings

* Under-approximation
— Will find counterexample if in bounds
— Will always miss bugs that require larger bounds

* Relies on small-scope hypothesis
— Many defects have small counterexamples

Original approach

Java Code + Specification (JML)

Relational first order logic

(Alloy)

Alloy Analyzer (SAT with
external solver)

Forge Intermediate Representation (FIR)

e Simple relational programming language
— Supports modularity

* Automatic Java-to-FIR translation
— Relational view of the heap
— Types as sets
— Fields as functional relations
— Local variables as singleton sets

e Basically 3 tools: Forge, JIMLForge and JForge

The Forge framework

* From FIR procedure tool obtains

— Constraint between pre-state s and post-state s’: P(s, s’)
— User provided specification S(s, s’)

« Combinedto P(s,s') A—S(s,s’)

— True for executions that are possible but violate specification

e Bounds on

— Number of loop unrollings
— Bitwidth of FIR integers
— Scope for each domain

New approach: Three stage translation

Java Code + Specification (JML)

Forge Intermediate
Representation (FIR)

Kodkod relational logic

Kodkod model finder (SAT with
external solver)

Results

e Tested 169 methods of 8 classes
— Scope of 5, bitwidth of 4 (-8 to 7), 3 loop unrollings

* 19 specification violations found
— Overspecification, Underspecification or Bug
— No false alarms

* Minimum bound for each violation to be detected
— Scope 2, bitwidth 3, 3 loop unrollings
— Supports small-scope hypothesis

Example violation 1

class KiesLijst {
public int compareTo(final Object an_object) {
if (! (an_object instanceof KiesKring)) {
throw new ClassCastException () ;
}
final KiesKring k = (KiesKring) an_object;
return number () - k.number();

* Unit-Testing did not catch the bug because parameter is

of type Object instead of KiesLijst

11

Example violation 2

//@ requires a kieskring name.length() <= KIESKRING NAME MAX;
//@ ensures number () == a kieskring number;

//Q@ ensures name () .equals(a_kieskring name) ;

private /*@ pure @*/ KiesKring(final byte a kieskring numer,

final /*@ non null @*/ String a kieskring name) {

my number = a kieskring number;
my name = a_kieskring name;

}

//Q@ ensures \result.length() <= KIESKRING NAME MAX LENGTH;

/*@ pure non_null @*/ String name() { return my_ name; }Lg%?iﬁf‘

* Again missed by Unit-Testing.

12

Limitations

* Translation from FIR to relational logic
— Sound
— Complete within bounds

 Translation from Java to FIR

— Not all Java statements supported and optimizations
introduce imprecision

— Spurious counterexamples: Integer overflow due to limited
bitwidth

— Missed counterexamples: No real number arithmetic

Conclusion and future work

* Despite a verification-centric methodology 19 out of
169 methods violate specification

* Benefits compared to unit testing

e Future improvement of performance necessary

JMLForge not actively supported anymore, use JForge

References

* Not very detailed and self-contained, had to read
other papers as well

— Greg Dennis, Felix Chang, Daniel Jackson. Modular Verification of Code with
SAT

— Joseph R. Kiniry, Alan E. Morkan, Dermot Cochran, Fintan Fairmichael, Patrice
Chalin, Martijn Oostdijk, Engelbert Hubbers. The KOA Remote Voting System: A
Summary of Work to Date

— Divya Gopinath Scaling Scope Bounded Checking using Incremental
Approaches

— Kuat T. Yessenov A lightweight specification language for bounded program
verification

FIR example

class Birthday ({
/*@ non null */ Month month;
int day;

//@ requires this.month.checkDay (d);
//@ ensures this.day == d;
void setDay(int d) {
Month m this.month;
boolean dayOk = m.checkDay (d) ;
if (dayOk) this.day = d;

class Month {
int maxDay;
//Q ensures \result <==> (d > 0 && d <= maxDay) ;
/*@ pure */ boolean checkDay(int d) { .. }

16

FIR example

domain Birthday, domain Month, domain Object
global month: Birthday -> Month

global day: Birthday -> Integer

global maxDay: Month -> Integer

local this: Birthday, local d: Integer

local m: Month, local dayOk: Boolean

proc setbDay (this, d): ()
m = this.month;
dayOk = spec (dayOk & (d > 0 AND d <= m.maxDay)) ;
if dayOk then day = day @ (this -> d) else exit;

17

JForge Example

° Eclipse Plugin, http://sdg.csail.mit.edu/forge/
* Uses JForge Specification Language (JFSL)

[J] ForgeTest.java &2 . Bl ForgeTest.setNumber
#import edu.mit.csail.sdg.annotations.Ensures;|]

public class ForgeTest {
int number;

= @Modifies{"this.number")
@Ensures("this.number = val")
public void setMumber({int wal) {
number = vall;

}

[2i Problems | @ Javadoc |[& Declaration | E Console |Bl JForge 2

i simulation of setNumber: found a trace of an execution
1 Compliance check of setNumber: no counter examples found within the given bounds

18

JForge Example

[J] ForgeTest.java 2 . B0 ForgeTest.setNumber

#import edu.mit.csail.sdg.annotations.Ensures;||
public class ForgeTest {
int number;
@Modifies("this.number")
@Ensures("this.number = val")

public void setMNumber(int val) {
number = 8;

[2i Problems | @ Javadoc |[& Declaration | B console | Bl JForge 2

i Simulation of setNumber: Found a trace of an execution
& Compliance check of setNumber: found a trace of a potential bug

19

JForge Example

J] ForgeTest.java [ForgeTest.setNumber 3

Trace of the execution

‘Open ktrace visualizer in a separate window

~ Rook cause #1:

((this.number) =val)

b Trace evaluator:

-~ Trace visualizer:

[ForgeTeste: this| [null:

setNumber throw

~ Complete trace:

20

