Separation Logic, Abstraction and Inheritance
M. Parkinson, G. Bierman, in Proc. POPL, 2008

Timothée Martiel

Research Topics in Software Engineering

1/19



Outline

@ From Separation Logic to Inheritance

@ Beyond Separation Logic

© What About Invariants?

2/19



@ From Separation Logic to Inheritance
@® Beyond Separation Logic

© What About Invariants?

3/19



Separation Logic

Extension of Hoare Logic
Models heap manipulation

Local reasoning: separate heap into disjoint parts

No abstraction (modules, classes, dynamic method binding)

{P}C{Q}

{Precondition} Code{ Postcondition}

4/19



Separation Logic: Specification and Program Constructs

Specifications

e Points to predicate: j —> x

e x conjunction: /> X% j >y

Program

Heap allocation: cons(x)

Heap lookup: i = [x]

e Heap assignment: [x] =i

Heap deallocation: dispose(x)

5/19



Separation Logic: Frame Rule

Frame Rule

{Prc{Q}
{P+R}C{Q* R}

Provided: free variables of R are not modified in C

e Aliasing control

e Local reasoning

6/19



Separation Logic and Object-Oriented Verification

Challenges of object-oriented languages:
e Heavy heap usage: object references

e Inheritance and dynamic dispatch
Separation logic

e Is a good framework for heap control

e Needs extension to support inheritance

7/19



@ From Separation Logic to Inheritance
@ Beyond Separation Logic

© What About Invariants?

8/19



Framework Overview

3 extensions

@ Abstract Predicate Families to abstract data types
@® Static and Dynamic method specifications for static or

dynamic method calls
© Verification rules: method body is verified exactly once

9/19



Example: Cell Class Hierarchy

Example

class ReCell: Cell {

class Cell { int back;

int val;

public CellO){} ERALE SEORL)

public override void set(int x)
{this.back = this.Cell::get();
this.Cell::set(x);}

public virtual void set(int x)
{this.val = x;}

bli irtual int B

} public virtual void undo(){...}

10/19



Extension 1: Abstract Predicate Family

e Abstract predicate describe abstract data types

e Class hierarchy gives a family of abstract predicates, one for
each class

e Predicates accessible within the class hierarchy, predicate
definition accessible within the class
Example
Family Val(x, v):

Valcen(x,v) = xwal — v
Va/ReCe,,(x, v, b) = Va/Ce,,(x, V) A x.back — b

Note: variable argument numbers are compensated by existential
quantifiers

11/19



Extension 2: Method Specifications

e Two types of specifications: static ({Sc} {Tc¢}) and dynamic
({Pc} _{Qc}), for static and dynamic dispatch

4 elementary verifications

e Body verification: {Sc}method body{T¢}

e Dynamic dispatch: {Sc} {Tc¢} stronger than {Pc} {Qc}

¢ Behavioral subtyping: with D <: C, {Pp} {Qp} stronger
than {Pc} {Qc}

e Inheritance: with D <: C, {Sc} {T¢} stronger than

{Sp} _{Tp}

12/19



Extension 3, Verifying Methods: Cell::set(int x)

Specifications
e Dynamic: {Val(this, )} {Val(this,x)}
o Static: {Valcey(this, )} {Valcey(this,x)}
Verification: method implemented in the base class
e Body verification:
{Valcey(this, )}this.val = x; { Valcey(this, x)}
e Dynamic dispatch:

{VaICel/(thiSa _)}_{Va/CeI/(thisa X)}
= {Val(this, )} {Val(this,x)}

13/19



Extension 3, Verifying Methods: ReCell: :set(int x)

Specifications

e Dynamic: {Val(this,v, )} {Val(this,x,v)}
e Static: {Valgecen(this,v, )} {Valgecen(this,x, v)}

Verification: overridden method

e Behavioral subtyping:

{Val(this,v, )} {Val(this,x,v)}
= {Val(this, )} {Val(this,x)}

e Dynamic dispatch

e Body verification

14/19



Extension 3, Verifying Methods: ReCell: :get ()

Specifications

e Dynamic: {Val(this,v,0)} {Val(this,v,o) x ret = v}
e Static: {Valgecen(this, v,0)} {Valgecei(this, v, o) * ret = v}
e Static for Cell: {Valcey(this,v)} {Valcey(this, v) x ret = v}

Verification: inherited (not overridden) method

e |nheritance:

{Valce/,(this, v)}_{Va/Ce//(this, V) * ret = V}
= {Valrecen(this, v, 0)} {Valgecen(this, v, 0)}

e Behavioral subtyping
e Dynamic dispatch

15/19



@ From Separation Logic to Inheritance
@® Beyond Separation Logic

© What About Invariants?

16 /19



Object Invariants

Invariant: explicit consistency criterion on an object

When does it hold or not? How does an object tell that to a
client?

Drossopoulou et al., in ECOOP, 2008
Spec#, Barnett et al., in Proceedings of CASSIS, 2005

17/19



Separation Logic: One More Trick

e Not a behavioral subtype:

Example “copy-and-paste”
inheritance
class DCell: Cell { e Forbidden in
invariant-based approaches
public DCell O {} e With separation logic:
public override void Valpcen(x, v)=false
set(int x) DVal(x, v)=Valcey(x, v)
{this.Cell::set(2 * x);}
} works fine: DCell is not a

(behavioral) subtype of
Cell for the logic.

18/19



Conclusion: a Flexible Framework

Framework

e More expressive than most other approaches
e Requires more annotation: this can be automated

Cannot use first-order SMT solvers

Has been extended to a Java verifier (jStar, Distefano et al., in
OOPSLA, 2008)

Article

e Self-contained, no other article required if you know separation
logic
e Well explained: formalism, intuition, examples

e Gives an elegant solution in an elegant form

19/19



Appendix

@ Formal Separation Logic Definitions

@ Bibliography

20/19



Separation Logic Definitions: Stack and Heap

Definition (Stack)

S=Variables — Values
Definition (Heap)

H=Locations — Values
Definition (Program State)

(S,H, 1)

e /: auxiliary variables stack

21/19



Separation Logic Definitions: Specifications

Definition (points to)

(S,H,I)EE—E" = dom(H)={[Els,}
AH([E]s,) = [E']s.i

Definition (star)

(S,H,))EPxQ 2 3Hi, Ho.HyxHo = H
/\(SaH]J/)):P/\(SvHZ)I)):Q

22/19



Separation Logic: Rules

Definition (Frame Rule)

F{P}C{Q}
F{PxR}C{Q =« R}

Provided: modified(C) NFV(R) =0

23/19



Bibliography

e M. Barnett, K. R. M. Leino and W. Schulte. “The Spec#
Programming System: An Overview". In Proceedings of
CASSIS, 2005

e D. Distefano and M. Parkinson “jStar: towards practical
verification for java”, in OOPSLA 2008

e S. Drossopoulou, A. Francalanza, P. Miiller and A. J.
Summers. “A Unified Framework for Verification Techniques
for Object Invariants”. In ECOOP 2008

24 /19



	From Separation Logic to Inheritance
	Beyond Separation Logic
	What About Invariants?
	Appendix
	Formal Separation Logic Definitions
	Bibliography


