
Object Ownership in 
Program Verification

Werner Dietl - University of Washington
Peter Müller - ETH Zürich

Presentation by Roman Schmocker



Motivation



Object Ownership
The basic concepts

● Goal: Information on Heap structuring
○ Reasoning about aliasing

● Ownership topology
○ Objects can own other objects
○ At most one owner
○ Enforced by language

● Encapsulation
○ Protect owned objects from arbitrary modifications
○ Write access only for the owner
○ Readonly or no access for others

linked_list

node node

item item



Dynamic Ownership
Ownership topology in Spec#

● Implicit ghost field: owner
○ Once set, cannot change

● Attributes on fields

linked_list

node node

item item



Dynamic Ownership
Ownership topology in Spec#

● Owner set automatically
linked_list

node node

item item



Encapsulation

● Goal: Do not circumvent owner!
○ Write access needs "permission" of owner

● Object states
○ Valid: Invariant holds, read access
○ Mutable: Invariant can be broken, read/write access
○ Consistent: Valid, with mutable owner

● Encapsulation invariant 
○ Never allow a mutable object with a valid owner!



Encapsulation

● Heap topology
○ Forest of ownership 

trees
○ Belt of consistent 

objects

● expose(o) { ...}
○ o becomes mutable 

within code block
○ only possible on 

consistent objects

Mutable

Consistent 

Valid



Encapsulation

● Mutating (impure) methods
○ Requires consistent receiver, argument, return value
○ Rationale: 

■ May expose receiver
■ May call mutating methods on arguments
■ Caller should be able to modify return value

● Pure methods
○ Only requires valid receiver, argument, return value
○ Rationale: Not allowed to change values anyway



Example
this

n

head tail



Example
this

n

head tail



Example
this

n

head tail



Example
this

n

head tail



Example
this

n

head tail



Example
this

n

head tail



Applications
Framing



Applications
Framing

● Case 1: Shared node structures

● Case 2: a transitively owns b

● Case 3: a == b



Applications
Framing

● Case 1: Shared node structures
○ No: contradicts topology invariant (only one owner)

● Case 2: a transitively owns b

● Case 3: a == b



Applications
Framing

● Case 1: Shared node structures
○ No: contradicts topology invariant (only one owner)

● Case 2: a transitively owns b
○ No: Illegal call, since a and b cannot be both 

consistent

● Case 3: a == b



Applications
Framing

● Case 1: Shared node structures
○ No: contradicts topology invariant (only one owner)

● Case 2: a transitively owns b
○ No: Illegal call, since a and b cannot be both 

consistent

● Case 3: a == b
○ No: see precondition



Applications
Multi-Object Invariants

● Multi-Object Invariants
○ Invariants on state of referenced objects

● Problem
○ Objects may break the invariant of another object 

they didn't even know existed
○ Hard to check statically
○ A temporary break may actually be necessary



● Admissible Invariants
○ Only allow multi-object invariants on [Rep] objects
○ Objects can only break invariant of their owner
○ OK, since owner is mutable anyway

● Modular invariant checking
○ At the end of expose() block
○ At the end of constructor

Applications
Multi-Object Invariants



Applications
Immutable Objects

● Readonly interfaces
○ Can be casted away easily

● Wrapper classes
○ Make sure no mutable inner structure is leaked
○ Boilerplate code
○ (In Java:) Runtime checking, Exceptions

● Immutable objects
○ Only pure methods + constructor
○ Leaking still problematic
○ Inflexible object construction
○ Usually no inheritance allowed



Applications
Immutable Objects

● Freezer object
○ Cannot be exposed

● Ownership solution
○ Just set owner to the Freezer!



● Transitive for all owned objects
○ especially useful for data structures

● No boilerplate code necessary
○ Any object can become immutable

● Static checking
○ Inner structures safe from write access

● Allows complex initialization

Applications
Immutable Objects



Conclusion

● Provides encapsulation for object structures
○ Statically checked!

● Some nice applications
○ Interesting ones shown in talk
○ Further applications: Termination proof, data race 

freedom, effect specialization

● Little annotation overhead
○ But also less flexibility

● Possible to integrate in other languages



About the paper 
Historical Context

● 80s: Object-oriented programming emerges
○ Aliasing increasingly problematic

● 90s: Idea of Object ownership evolved
○ Most solutions inflexible and/or unsound

● 1998: Clarke et al: Ownership types
○ Flexible type system, soundness proven

● 2004: Microsoft releases Spec#

● 2012: This paper
○ Two implementations for Object ownership
○ Several applications



About the paper

● Assessment
○ Well written, self-contained
○ Many comparisons to other solutions
○ Main concepts actually come from another paper

● Current status
○ Dynamic Ownership implemented in Spec#
○ Framing and Multi-object invariants work
○ Freezing objects not implemented yet
○ Try it online: http://rise4fun.com/SpecSharp

http://rise4fun.com/SpecSharp

