
Presented by Paolo Antonucci

Using the Spec# Language,
Methodology, and Tools to Write

Bug-Free Programs

04/05/13

K. Rustan M. Leino, Peter Müller

This paper is more similar to a practical tutorial than a
research paper.

“It is specifically not a goal of this tutorial to justify the
Spec# methodology, only to explain how it is used.”

Focus on the language, in the status it was when the
paper was published.

About this paper

2

Spec# is a research language that extends C# 2.0 with
new constructs and features.

In particular it features program specifications that are
enforced both statically and dynamically.

A verifier runs at compile time and attempts to prove
the program correct.

Verification is modular.

What is Spec#?

3

Spec# imposes a methodology (programming
discipline). Following this will lead to well specified and
easily verifiable programs.

Unfortunately it is very easy to fall outside the
boundaries.

It is much easier to verify programs if they are designed
according to this methodology from the start.

The Spec# methodology

4

• Introduction
• Quick tour into Spec#
• Demo
• Final discussion

Outline

5

We are here!

Class invariants

6

public class Exam {

 private int ExGrade = 100;

 private DateTime ExDate;

 invariant ValidGrade(ExGrade);

 [Pure] static bool ValidGrade(int grade)

 ensures result == ((grade % 25 == 0)

 && 100 <= grade && grade <= 600);
 {
 return (grade % 25 == 0)

 && 100 <= grade && grade <= 600;
 }

}

Class invariant: must
always hold when the

object is consistent

Pure function

Pure functions promise to return values with no side effect. This
makes it possible to use them in program specifications.

Sometimes it is necessary to temporarily break an
object invariant.

This is done by “exposing” the object with the expose
construct.

The verifier will attempt to prove that at the end of the
expose block the invariant is restored.

Class invariants

7

expose (this) {
 // Break the invariant
 // Restore the invariant
}

Method contracts

8

public void setGrade(int grade)

requires ValidGrade(grade);

ensures ExGrade == grade;

modifies this.ExGrade;

{
 ExGrade = grade;
}

Methods are only
allowed to modify fields

declared here

Contracts are checked both statically and dynamically.

Methods are also checked to maintain class invariants.

The modifies clause can be omitted: in this case it is interpreted
as modifies this.*.

Redefined methods inherit contracts from the superclass.

Inline assertions are checked
by the program verifier. They
are redundant in principle.

Assertions and assumptions

9

public void setGrade(int grade)

requires ValidGrade(grade);

ensures ExGrade == grade;

modifies this.ExGrade;

{
 ExGrade = grade;
 assert 400 <= ExGrade;
}

public void setGrade(int grade)

requires ValidGrade(grade);

ensures ExGrade == grade;

modifies this.ExGrade;

{
 ExGrade = grade;
 assume 400 <= ExGrade;

}

Assumptions are taken on
faith by the program verifier.
They trade static checking for
flexibility.

BOTH are checked at runtime.

Non-null types

10

 public static void pippo(string! foo, string? bar) {

 Console.WriteLine(foo.Length);
 if (bar == null)

 return;

 Console.WriteLine(bar.Length);
 }

All variables of non-primitive types can be declared either as
non-null or as possibly null.

An exclamation mark (bang!) declares a non-null type.
A question mark (uh?) declares a possibly-null type.

Dereferencing a possibly-null pointer is only allowed if static
dataflow analysis can prove that it cannot be null at that point.

DEMO

Demo

11

Verification warnings feel like a natural extension of
classic compiler warnings.

The verifier seems to be reasonably “smart”.

Nevertheless, Spec# is indeed complex. Not suitable
for the average programmer.

This complexity feels usually elegant, but sometimes
some innocuous features can be surprisingly awkward.

Conclusion – how it feels

12

Undoubtedly still a research language.
• Almost no documentation
• Development tools somewhat buggy
• Sometimes unexpected behavior

(e.g. cannot prove anything about doubles)

In the future some features could make it to C#.
• This was already the case for Code Contracts

Sadly, development doesn’t seem to be active.

13

Conclusion – current status

• Spec# home page
http://research.microsoft.com/en-us/projects/specsharp/

• Spec# CodePlex repository
http://specsharp.codeplex.com/

• Try Spec# online
http://rise4fun.com/SpecSharp

• Many research papers related to Spec#, more
references in the Spec# home page and in this paper

References

14

http://research.microsoft.com/en-us/projects/specsharp/
http://specsharp.codeplex.com/
http://rise4fun.com/SpecSharp

Question time

15

Questions?

Spec# supports object topology/ownership.

An object can, for example, own other objects used for
the internal representation of its data.

This is encoded with the [Rep] attribute in the code.

Object owners can also be set manually and specified
in contracts.

Bonus slide
Object ownership – recall

16

public class StudentCurriculum {

 [Rep] Thesis? MasterThesis;

}

As an informal rule, an object can only be modified
with the “permission” of its owner.

This makes it possible for object invariants to rely on
[Rep] owned objects.

Bonus slide
Object ownership – recall

17

Sometimes it is necessarily to temporarily break an
object invariant.

This is done by “exposing” the object with the expose
construct.

Bonus slide
Object ownership and invariants – recall

18

expose (this) {
 // Break the invariant
 // Restore the invariant
}

As object invariants can refer to owned [Rep] objects, any
change to an object can potentially break the invariant of its
owner.

For this reason, non-pure methods can only be called on an
object after exposing its owner.

This was just a quick recall, there is much more about this.

Bonus slide
Object ownership and invariants – recall

19

public void setThesisTitle(string title) {
 expose (this) { // This is necessary!
 MasterThesis.setTitle(title);
 }
}

