Automated Error Diagnosis Using Abductive Inference

Isil Dillig! ~ Thomas Dillig! Alex Aiken?
IDepartment of Computer Science
College of William & Mary, Virginia, USA
2Department of Computer Science

Stanford University, CA, USA

PLDI 2012

Severin Heiniger

Research Topics in Software Engineering May 13th, 2013 1 /22

An Ordinary Day in a Developer's Life

1 void foo(int flag, unsigned int n) {

2 int k=0, i =0, j=20, z=0;
3 if (flag) k = n;

4 else k = 1;

5

6 while (i <=n) {

7 i =i+ 1;

8 =]+ i;

o}

10 int z=k+ i 4+ j;
11 assert(z > 2 % n);

2}

Research Topics in Software Engineering May 13th, 2013 2 / 22

An Ordinary Day in a Developer's Life

1 void foo(int flag, unsigned int n) {

2 int k=0, i =0, j=20, z=0;
3 if (flag) k = n;
4 else k = 1;
5

6 while (i <=n) {
7 i =i+ 1;

8 =]+ i;
o}

10 int z=k+ i 4+ j;
11 assert(z > 2 % n);
2}

Static analysis tool error report

Assertion z > 2 % n may not always hold.

Research Topics in Software Engineering May 13th, 2013 2 / 22

Manual Report Classification

Program

[Some Static AnaIysis]—» Success

Potential Error Report

User Decides

Genuine Bug False Alarm

Research Topics in Software Engineering May 13th, 2013 3 / 22

Manual Report Classification

@ Time-consuming
@ User repeats all successful reasoning by tool

@ Error-prone

Major impediment to adoption of static analysis tools l

Research Topics in Software Engineering May 13th, 2013 4 / 22

Semi-Automated Report Classification

Program

[Some Static Analysis]—» Success

Potential Error Report
Inferred Invariants

[This paper: Assist User]

Y

Genuine Bug False Alarm

Research Topics in Software Engineering May 13th, 2013 5 / 22

Semi-Automated Report Classification

Program with Inferred Invariants
and Potential Error Report

e N

[Identify Sources of Incompleteness}

Yes or No
T
If uncertain:

Small, relevant query

/ \

Genuine Bug False Alarm

Research Topics in Software Engineering May 13th, 2013 6 / 22

@ Proof Obligation Query: Is property P an invariant?
o If yes, the program is certainly error-free (false alarm)

o Failure Witness Query: Can property P arise in some execution?
o If yes, the program is certainly buggy

Strategy

Pose queries in order of increasing cost (easiest first) to minimize the
amount of trusted information the user must supply

Research Topics in Software Engineering May 13th, 2013 7 / 22

We are Here

Program with Inferred Invariants
and Potential Error Report

e N

[Identify Sources of Incompleteness}

Yes or No
T
If uncertain:

Small, relevant query

/ \

Genuine Bug False Alarm

Research Topics in Software Engineering May 13th, 2013 8 / 22

@ Program with parameters, local variables, conditionals and while loops
@ Only linear arithmetic, no function calls

@ While loops annotated with inferred post-condition p’:
while(p) { s } [F]
@ Program ends with an assert (p)

Research Topics in Software Engineering May 13th, 2013 9 / 22

|dentify Sources of Incompleteness

Symbolically evaluate the program. At each point in the program,
environment S maps program variables to symbolic value sets.

S(i) ={...,(m,¢),...} Under constraint ¢, the value of variable i
is the symbolic expression 7

Constraints ¢ keep values from different paths separate. 7w can contain

Input Variables v For unknown program inputs

Abstraction Variables o For unknown values due to imprecisions,
e.g., after loops

Research Topics in Software Engineering May 13th, 2013 10 / 22

1 void foo(int flag, unsigned int n) {

2
3
4
5
6
7
8
9

10
11
12

13}

int k=0, i =0, j=20, z=0;
S(k) = {(0, true)} S(i) = {(0, true)}
if (flag) k = n;
else k = 1;
S(k) = {(1, ~Vag), (Vn, Viag) }
while (| <=n) {
i =i+ 1;
=1+ i
} S(i) = {(ai, true)} S(j) = {(ay, true)}
int z k + 0 + j; S(z) = {(1 + ai + aj, Whag), (Vn + i + 0, Vriag) }

assert(z>2xn);

Research Topics in Software Engineering May 13th, 2013 11 /22

1 void foo(int flag, unsigned int n) {

2
3
4
5
6
7
8
9

10
11
12

13}

int k=0, i=0, j=0, z=0;

S(k) = {(0, true)} S(i) = {(0, true)}
if (flag) k = n;
else k = 1,

S(k) = {(1, ~vhag), (vn, viiag) }

i =i+ 1;
=13+ i;
}li>0ni>n] S(i) = {(as, true)} S(j) = {(ey, true)}
int z=k 4+ i + j; S(z) = {(1 + o + oy, ~wpag), (Vn + @i + @, Vriag) }

assert(z>2xn);

Propagate inferred invariants as constraints on abstract variables

Z=(aj>0AN0a;>vpAvy,>0)

Research Topics in Software Engineering May 13th, 2013 11 /22

1 void foo(int flag, unsigned int n) {

2
3
4
5
6
7
8
9

10
11
12

13}

int k=0, i =0, j =0, z=0;

S(k) = {(0, true)} S(i) = {(0, true)}
if (flag) k = n;
else k = 1,

S(k) = {(1, ~vhag), (vn, viiag) }

i =i+ 1;
=13+ i;
}li=0ni>n] S(i) = {(as, true)} 8() = {(oy, true)}
int z=k + i + j; S(z) = {(1 + ai + aj, Whag), (Vn + i + 0, Vriag) }

assert(z>2xn);

Symbolically evaluate the assertion predicate

d=1+ai+aj>2%v, AN Whag) V (Vn+ j + aj > 2% Uy A Vfag)

Research Topics in Software Engineering May 13th, 2013 11 /22

The result is a pair of symbolic constraints

7 All known invariants on abstract variables

¢ Condition under which the assertion evaluates to true

Research Topics in Software Engineering May 13th, 2013 12 / 22

The result is a pair of symbolic constraints

7 All known invariants on abstract variables

¢ Condition under which the assertion evaluates to true

If I = ¢, then the program is error-free (assertion always succeeds)
If T = —¢, then the program must be buggy (assertion always fails)

Research Topics in Software Engineering May 13th, 2013 12 / 22

We are Here

Program with Inferred Invariants
and Potential Error Report

e N

[Identify Sources of Incompleteness}

Z,¢ Yes or No
T
If uncertain:

Small, relevant query

/ \

Genuine Bug False Alarm

Research Topics in Software Engineering May 13th, 2013 13 / 22

Proof Obligation

Given known facts Z and success condition ¢, a proof obligation
is a formula I that — together with Z — proves ¢:

FAIE¢ and SAT(IAT)

Research Topics in Software Engineering May 13th, 2013 14 / 22

Proof Obligation

Given known facts Z and success condition ¢, a proof obligation
is a formula I that — together with Z — proves ¢:

AIE¢ and SAT(IAT)

Cost(I)

1 - # abstraction variables o € Vars(I')
+ |Vars(¢) U Vars(Z)| - # input variables v € Vars(I')

@ The fewer variables, the better

@ No input variables if possible

Research Topics in Software Engineering May 13th, 2013 14 / 22

Failure Witness

Given known facts Z and success condition ¢, a failure witness
is a formula T that — together with Z — proves —¢:

TATE ¢ and SAT(T AT)

Cost(T)

|Vars(¢) U Vars(Z)| - # abstraction variables o € Vars(T)
+ 1 - #input variables v € Vars(T)

@ The fewer variables, the better

@ Prefer input variables

Research Topics in Software Engineering May 13th, 2013 15 / 22

Weakest Minimum Queries

Weakest Minimum Proof Obligation I

@ costs less than or equal to any other proof obligation, and
@ is no stronger than any other proof obligations with same cost

Weakest Minimum Failure Witness T Dito

Research Topics in Software Engineering May 13th, 2013 16 / 22

Ask the User

Ask the user the one with lower cost
@ Does T hold in all program executions?

Yes Program is error-free (because ' AZ = ¢)
No Add —I to known witnesses and maybe ask another query

e May T arise in some execution?

Yes Programm is buggy (because T A Z = —¢)
No Add —7T to known facts Z and maybe ask another query

Research Topics in Software Engineering May 13th, 2013 17 / 22

1 void foo(int flag, unsigned int n) {

2 int k=0, i =0, j=20, z=0;

3 if (flag) k = n;

4 else k = 1;

5

6 while (i <= n) {

7 i =i+ 1;

8 =3+ i

o}

10 int z=%k+ i+ j; IT=(a;i>0Aq>vyAvy,>0)

11 assert(z > 2 % n); d=(1 +aitaj>2%xvn A W)V
2} (Wntaitaj>2%un A Vpag)

Weakest Minimum Proof Obligation ' = (¢ > vp)
Weakest Minimum Failure Witness T = (—wgag A aj + aj < 0)

Research Topics in Software Engineering May 13th, 2013 18 / 22

1 void foo(int flag, unsigned int n) {

2 int k=0, i =0, j=20, z=0;

3 if (flag) k = n;

4 else k = 1;

5

6 while (i <= n) {

7 i =i+ 1;

8 =3+ i

o}

10 int z=%k+ i+ j; IT=(a;i>0Aq>vyAvy,>0)

11 assert(z > 2 % n); d=(1 +aitaj>2%xvn A W)V
2} (Wntaitaj>2%un A Vpag)

Weakest Minimum Proof Obligation ' = (aj > v,,) ¢/ (false alarm!)
Weakest Minimum Failure Witness T = (—wgag A o + aj < 0)

Research Topics in Software Engineering May 13th, 2013 18 / 22

User Study: Setup

@ 56 professional C programmers
o Classify 11 uncertain error reports for real-world code as

o Genuine bugs (5), or
o False alarms (6), or
e [don't know

@ Randomly assigned to classify manually or using the new technique

Research Topics in Software Engineering May 13th, 2013 19 / 22

User Study: Results

Manual Classification _
& 5 mins |
New Technique —
[| | | | J
0 20 40 60 80 100

Correct | Don't Know il Wrong

Research Topics in Software Engineering May 13th, 2013 20 / 22

User Study: Results

s mins]
& 5 mins

New Technique .
& 1 min \
| | | | \

0 20 40 60 80 100
Correct | Don't Know il Wrong

Research Topics in Software Engineering May 13th, 2013 21 / 22

Related Work

Explaining Error Traces in Model Checking
Requires counter-example, does not address false alarms

Counterexample-Guided Abstraction Refinement (CEGAR)
Learn new predicates from concrete counter-example trace
Fully automatic, but not guaranteed to terminate

Research Topics in Software Engineering May 13th, 2013 22 / 22

Conclusion

e Implementation not (yet) publicly available
@ Practical technique to help programmers classify error reports

@ Tool-agnostic

Research Topics in Software Engineering May 13th, 2013 23 / 22

Questions

Research Topics in Software Engineering May 13th, 2013 24 / 22

Program P :=)d. (let ¥ in (s; check(p)))
Statement s = v =e|skip]| s1;s2

| if(p) then s; else s

| while”(p){s}[@p']?
Expressione := wv|c|c*xe|lei®ex (&€ {+,—})
Predicatep = e1 Qes (@ €{<,>,=})

| p1 Ap2|p1Vp2|—p

Research Topics in Software Engineering May 13th, 2013 24 / 22

Operational Semantics of the Language

® € {+,—,*}
Stei:c1 Sktea:ca

Skv:Sw) Skc:c Skei@ex:c1®e

S|—€1:C1 S'—GQ:CQ

po] e ifer@c lop € {A,V}

- false otherwise Skpp:by Skpa:by
Skei@ea:b S+ p1 lop pa: by lop b2
Skp:b Ste:c

St-p:=b Stv=e:S[c/v] Skskip:S

SkEp:true SEksp:5; SEp:false SFEs2: S
S+ if(p) then sj else sz :S; St if(p) then sy else sp : So

Skp:true Sks:S’
Stks1:81 Siks2:8: S’ +loop” (p){s} : S”

St s1;82: 52 S loop” (p){s} : S”
S+ loop?(p){s}: S’ S'Fp’:true S+ p: false
S+ whileP(p){s}[@p'] : ' S+ loop”(p){s}: S

S=la/ar,...,ck/ag][0/v1,...,0/vn]
SFs:S S Fp:b

F Ad.(let ¥ in (s; check(p)))(c1,...ck) = b

Research Topics in Software Engineering May 13th, 2013 24 / 22

Operations on Symbolic Value Sets

01 = {(m1,¢1),..., (7, d1)}

92:{77/17¢/1)5""(n7¢/)}

6= U, ((m & 1), (6 A D))
|—91€992¢9

91 = {(7T17¢1)> ceey (7rk>¢k)}

02 = {(71, 1), (7, &)}

b=V, (ni @) A A)
FoL©02: ¢

9/ = U(Wi7¢i)€9 (ﬂ-ii (¢Z A ¢))
FOANG:O

Research Topics in Software Engineering May 13th, 2013 24 / 22

Symbolic Evaluation Rules for Expressions and Predicates

@ € {+, —, *}
Skejp:00 Skeg: b

SFov:S(w) Sk ec:(ctrue) Skei@ea: 0102

lop € {A,V}
S|_€1:01 Sl—pltqbl
Skes:0s SEp2: o Skp:¢

Skeir@ez:01 002 Skp; lop p2:¢1 lop g2 Sk —p: ¢

Research Topics in Software Engineering May 13th, 2013 24 / 22

Transformers for the Symbolic Evaluation

Ske:0 S, ZF s1:S1,71
S’ = S[0/v] S1,71 - 52 :S2, 1o
SSZTFv=e:S,Z7 S,ZF skip:S,Z S,ZF s1;82:S2,Z2
Skp:o

S,TFs1:S1,T1 S,TF s2:S2,T»
S" = (S1 A @)U (S2 A —¢)
7' =((¢=Ti) N (~¢ = I2))
S,ZF if(p) then s; else sy : S/, 7/

S" = S[(af, true) /v1, . .., (X, true) /vi]) (T modified in s)
S,Z loop?(p){s}:S',T

S,Z+loop?(p){s}:S,Z S'kp :¢
S,Z F whilef(p){s}[@p/] : S/, Z A ¢

S = [(v1,true) /a1, . .., (v, true) /ak]
S" = S[(0, true) /va, . . ., (0, true) /vy
S truets:S", T S't+p:¢

F A\d.(let ¥ in (s; check(p))) : Z, ¢

Research Topics in Software Engineering May 13th, 2013 24 / 22

Definitions for Proof Obligations |

Proof Obligation

Given known facts Z and success condition ¢, a proof obligation is a
formula I such that

FNZE=¢ and SAT(IAI)

Cost of Proof Obligation

Let I be a proof obligation query for Z, ¢, and let [1, be a mapping from
variables to costs such that M,(a) = 1 for abstraction variable o and
Mp(v) = |Vars(¢) U Vars(Z)| for input variable v. Then,

Cost(l) = > Mp(v)

vE Vars(I)

| A

Research Topics in Software Engineering May 13th, 2013 24 /22

Definitions for Proof Obligations Il

Weakest Minimum Proof Obligation

Given known facts Z and success condition ¢, a weakest minimum proof
obligation is a formula I such that

O@IMANZTE¢ and SAT(ITAI)

@ For any other I that satisfies @, either Cost(I') < Cost(I"") or
Cost(l') = Cost(MM A (T A T'VI <)

Research Topics in Software Engineering May 13th, 2013 24 / 22

Computing Weakest Minimum Proof Obligations

First, rewrite TANZ = ¢ asT =7 = ¢.

Cost of Partial Assignment

Let o be a partial assignment for a formula ¢ and let 1 be a mapping from
variables in ¢ to non-negative integers. The cost of partial assignment o is

Cost(o) = Z M(v)

ve Vars(o)

Minimum Satisfying Assignment
Given mapping I from variables to costs, a minimum satisfying
assignment of formula ¢ is a partial assignment o to a subset of the
variables in ¢ such that

e o(p) = true

@ Vo' such that o/(¢) = true, Cost(c) < Cost(c’)

V.

Research Topics in Software Engineering May 13th, 2013 24 /22

Computing Weakest Minimum Proof Obligations Il

Minimum statisfying assignments help determine the minimum set of
variables that any proof obligation ' must contain.

Consistent Minimum Satisfying Assignment

A minimum satisfying assignment o of ¢ is consistent with ¢ if o(¢') is
satisfiable.

Assignments that falsify Z are not interesting. We want a minimum
statisfying assignment to Z = ¢ that is consistent with Z.

Interpret o as a logical formula F,. F, is a strongest proof obligation. It
assigns each variable to a concrete value.

Research Topics in Software Engineering May 13th, 2013 24 / 22

Computing Weakest Minimum Proof Obligations |l|

We want the weakest sufficient condition of Z = ¢ containing only
variables in o.

Lemma

Let V' be the set of variables in a minimum satisfying assignment of

T = ¢ consistent with Z, and let /' be the set of variables in T = ¢ but
not in V. We can obtain a weakest minimum proof obligation by
eliminating the quantifiers from the formula

YV. (T = ¢)

Research Topics in Software Engineering May 13th, 2013 24 /22

Deciding Proof Obligation Queries

Valid Answer to Proof Obligation Query
We say that the answer to a proof obligation query I is valid iff:
@ The answer is either yes or no

o If the answer is yes, then I holds on all program executions (i.e., I' is
a program invariant)

@ If the answer is no, then there is at least one execution in which I is
violated

Let T be a proof obligation query and suppse yes is a valid answer to this
query. Then, the program is error-free.

Research Topics in Software Engineering May 13th, 2013 24 /22

From Formulas to Queries

e Translate analysis variables into program expressions (easy)
@ Decompose complex queries to a series of simpler queries

o If ¢1 A ¢ is an invariant, so are ¢ and ¢»

o If ¢1 V ¢y is a witness, so are ¢ and ¢»

e Convert invariant queries to CNF and witness queries to DNF
e Treat each clause as separate, independent query

@ We learn additional facts for every subquery

Research Topics in Software Engineering May 13th, 2013 24 / 22

Algorithm (Given Z and ¢)

1 W:=10

2> while(true) {

3 if (Valid(Z = ¢)) return ERROR.DISCHARGED

4 if (3Ye W.UNSAT(ZAY A¢)) return ERROR.VALIDATED
5 Vi = ComputeMSA(Z = ¢, WUZ,,)

6 I = ElimQuantifier(VV4.(Z = ¢))

7 Vo, = ComputeMSA(Z = —¢p, WUZ, M)

8 T = ElimQuantifier(VVa. (T = —¢))

9

10 if (Cost(l') < Cost(T)) {

11 Q1 = FormlnvariantQuery (I")

12 if (answerto @ = YES) return ERROR_DISCHARGED
13 W:=Wwu-lr

14 } else {

15 Q> = FormWitnessQuery (7T)

16 if (answerto @ = YES) return ERROR_VALIDATED
17 T:=ZA=T

18 }

o}

Research Topics in Software Engineering May 13th, 2013 23 / 22

Implementation

Implemented on top of Compass analysis framework for C programs

Also reasons about heap objects, arrays and function calls

Sources of imprecisions are loops, non-linear arithmetic, inline
assembly, etc.

Allow the user to answer [don't know

Uses own Mistral SMT solver to compute minimum satisfying
assignments.

Research Topics in Software Engineering May 13th, 2013 22 / 22

References

[@ Isill Dillig, Thomas Dillig and Alex Aiken.
Automated Error Diagnosis Using Abductive Inference
Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), 181-192, 2012.

Research Topics in Software Engineering May 13th, 2013 22 / 22

	Introduction
	Identify Sources of Incompleteness
	Query-Guided Error Diagnosis
	Experiments
	Conclusion
	Appendix
	Appendix

