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An Ordinary Day in a Developer's Life

1 void foo(int flag, unsigned int n) {

2 int k=0, i =0, j=20, z=0;
3 if (flag) k = n;

4 else k = 1;

5

6 while (i <=n) {

7 i =i+ 1;

8 =]+ i;

o}

10 int z=k+ i 4+ j;
11 assert(z > 2 % n);

2}
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6 while (i <=n) {
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8 =]+ i;
o}

10 int z=k+ i 4+ j;
11 assert(z > 2 % n);
2}

Static analysis tool error report

Assertion z > 2 % n may not always hold.
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Manual Report Classification

Program

[Some Static AnaIysis]—» Success

Potential Error Report

User Decides

Genuine Bug False Alarm
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Manual Report Classification

@ Time-consuming
@ User repeats all successful reasoning by tool

@ Error-prone

Major impediment to adoption of static analysis tools l
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Semi-Automated Report Classification

Program

[Some Static Analysis]—» Success

Potential Error Report
Inferred Invariants

[This paper: Assist User]

Y

Genuine Bug False Alarm
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Semi-Automated Report Classification

Program with Inferred Invariants
and Potential Error Report

e N

[Identify Sources of Incompleteness}

Yes or No
T
If uncertain:

Small, relevant query

/ \

Genuine Bug False Alarm
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@ Proof Obligation Query: Is property P an invariant?
o If yes, the program is certainly error-free (false alarm)

o Failure Witness Query: Can property P arise in some execution?
o If yes, the program is certainly buggy

Strategy

Pose queries in order of increasing cost (easiest first) to minimize the
amount of trusted information the user must supply
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We are Here

Program with Inferred Invariants
and Potential Error Report

e N

[Identify Sources of Incompleteness}

Yes or No
T
If uncertain:

Small, relevant query

/ \

Genuine Bug False Alarm
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@ Program with parameters, local variables, conditionals and while loops
@ Only linear arithmetic, no function calls

@ While loops annotated with inferred post-condition p’:
while(p) { s } [F]
@ Program ends with an assert (p)
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|dentify Sources of Incompleteness

Symbolically evaluate the program. At each point in the program,
environment S maps program variables to symbolic value sets.

S(i) ={...,(m,¢),...} Under constraint ¢, the value of variable i
is the symbolic expression 7

Constraints ¢ keep values from different paths separate. 7w can contain

Input Variables v For unknown program inputs

Abstraction Variables o For unknown values due to imprecisions,
e.g., after loops
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1 void foo(int flag, unsigned int n) {

2
3
4
5
6
7
8
9

10
11
12

13}

int k=0, i =0, j=20, z=0;
S(k) = {(0, true)}  S(i) = {(0, true)}
if (flag) k = n;
else k = 1;
S(k) = {(1, ~Vag), (Vn, Viag) }
while (| <=n) {
i =i+ 1;
=1+ i
} S(i) = {(ai, true)}  S(j) = {(ay, true)}
int z k + 0 + j; S(z) = {(1 + ai + aj, Whag), (Vn + i + 0, Vriag) }

assert(z>2xn);
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7
8
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11
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13}

int k=0, i=0, j=0, z=0;

S(k) = {(0, true)}  S(i) = {(0, true)}
if (flag) k = n;
else k = 1,

S(k) = {(1, ~vhag), (vn, viiag) }

i =i+ 1;
=13+ i;
}li>0ni>n] S(i) = {(as, true)}  S(j) = {(ey, true)}
int z=k 4+ i + j; S(z) = {(1 + o + oy, ~wpag), (Vn + @i + @, Vriag) }

assert(z>2xn);

Propagate inferred invariants as constraints on abstract variables

Z=(aj>0AN0a;>vpAvy,>0)
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if (flag) k = n;
else k = 1,

S(k) = {(1, ~vhag), (vn, viiag) }

i =i+ 1;
=13+ i;
}li=0ni>n] S(i) = {(as, true)}  8() = {(oy, true)}
int z=k + i + j; S(z) = {(1 + ai + aj, Whag), (Vn + i + 0, Vriag) }

assert(z>2xn);

Symbolically evaluate the assertion predicate

d=1+ai+aj>2%v, AN Whag) V (Vn+ j + aj > 2% Uy A Vfag)
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The result is a pair of symbolic constraints

7 All known invariants on abstract variables

¢ Condition under which the assertion evaluates to true

Research Topics in Software Engineering May 13th, 2013 12 / 22



The result is a pair of symbolic constraints

7 All known invariants on abstract variables

¢ Condition under which the assertion evaluates to true

If I = ¢, then the program is error-free (assertion always succeeds)
If T = —¢, then the program must be buggy (assertion always fails)

Research Topics in Software Engineering May 13th, 2013 12 / 22



We are Here

Program with Inferred Invariants
and Potential Error Report

e N

[Identify Sources of Incompleteness}

Z,¢ Yes or No
T
If uncertain:

Small, relevant query

/ \

Genuine Bug False Alarm
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Proof Obligation

Given known facts Z and success condition ¢, a proof obligation
is a formula I that — together with Z — proves ¢:

FAIE¢ and SAT(IAT)
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Proof Obligation

Given known facts Z and success condition ¢, a proof obligation
is a formula I that — together with Z — proves ¢:

AIE¢ and SAT(IAT)

Cost(I)

1 - # abstraction variables o € Vars(I')
+ |Vars(¢) U Vars(Z)| - # input variables v € Vars(I')

@ The fewer variables, the better

@ No input variables if possible
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Failure Witness

Given known facts Z and success condition ¢, a failure witness
is a formula T that — together with Z — proves —¢:

TATE ¢ and SAT(T AT)

Cost(T)

|Vars(¢) U Vars(Z)| - # abstraction variables o € Vars(T)
+ 1 - #input variables v € Vars(T)

@ The fewer variables, the better

@ Prefer input variables
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Weakest Minimum Queries

Weakest Minimum Proof Obligation I

@ costs less than or equal to any other proof obligation, and
@ is no stronger than any other proof obligations with same cost

Weakest Minimum Failure Witness T Dito
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Ask the User

Ask the user the one with lower cost
@ Does T hold in all program executions?

Yes Program is error-free (because ' AZ = ¢)
No Add —I to known witnesses and maybe ask another query

e May T arise in some execution?

Yes Programm is buggy (because T A Z = —¢)
No Add —7T to known facts Z and maybe ask another query
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1 void foo(int flag, unsigned int n) {

2 int k=0, i =0, j=20, z=0;

3 if (flag) k = n;

4 else k = 1;

5

6 while (i <= n) {

7 i =i+ 1;

8 =3+ i

o}

10 int z=%k+ i+ j; IT=(a;i>0Aq>vyAvy,>0)

11 assert(z > 2 % n); d=(1 +aitaj>2%xvn A W)V
2} (Wntaitaj>2%un A Vpag)

Weakest Minimum Proof Obligation ' = (¢ > vp)
Weakest Minimum Failure Witness T = (—wgag A aj + aj < 0)
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5

6 while (i <= n) {

7 i =i+ 1;

8 =3+ i

o}

10 int z=%k+ i+ j; IT=(a;i>0Aq>vyAvy,>0)

11 assert(z > 2 % n); d=(1 +aitaj>2%xvn A W)V
2} (Wntaitaj>2%un A Vpag)

Weakest Minimum Proof Obligation ' = (aj > v,,) ¢/ (false alarm!)
Weakest Minimum Failure Witness T = (—wgag A o + aj < 0)
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User Study: Setup

@ 56 professional C programmers
o Classify 11 uncertain error reports for real-world code as

o Genuine bugs (5), or
o False alarms (6), or
e [ don't know

@ Randomly assigned to classify manually or using the new technique
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User Study: Results

Manual Classification _
& 5 mins |
New Technique —
[ | | | | J
0 20 40 60 80 100

Correct | Don't Know il Wrong
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User Study: Results

s mins ]
& 5 mins

New Technique .
& 1 min \
| | | | \

0 20 40 60 80 100
Correct | Don't Know il Wrong
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Related Work

Explaining Error Traces in Model Checking
Requires counter-example, does not address false alarms

Counterexample-Guided Abstraction Refinement (CEGAR)
Learn new predicates from concrete counter-example trace
Fully automatic, but not guaranteed to terminate
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Conclusion

e Implementation not (yet) publicly available
@ Practical technique to help programmers classify error reports

@ Tool-agnostic
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Questions
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Program P := )d. (let ¥ in (s; check(p)))
Statement s = v =e|skip]| s1;s2

| if(p) then s; else s

| while”(p){s}[@p']?
Expressione := wv|c|c*xe|lei®ex (&€ {+,—})
Predicatep = e1 Qes (@ €{<,>,=})

| p1 Ap2|p1Vp2|—p
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Operational Semantics of the Language

® € {+,—,*}
Stei:c1 Sktea:ca

Skv:Sw) Skc:c Skei@ex:c1®e

S|—€1:C1 S'—GQ:CQ

po ] e ifer@c lop € {A,V}

- false  otherwise Skpp:by Skpa:by
Skei@ea:b S+ p1 lop pa: by lop b2
Skp:b Ste:c

St-p:=b Stv=e:S[c/v] Skskip:S

SkEp:true SEksp:5; SEp:false SFEs2: S
S+ if(p) then sj else sz :S; St if(p) then sy else sp : So

Skp:true Sks:S’
Stks1:81 Siks2:8: S’ +loop” (p){s} : S”

St s1;82: 52 S loop” (p){s} : S”
S+ loop?(p){s}: S’ S'Fp’:true S+ p: false
S+ whileP(p){s}[@p'] : ' S+ loop”(p){s}: S

S=la/ar,...,ck/ag][0/v1,...,0/vn]
SFs:S S Fp:b

F Ad.(let ¥ in (s; check(p)))(c1,...ck) = b
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Operations on Symbolic Value Sets

01 = {(m1,¢1),..., (7, d1)}

92:{77/17¢/1)5""( n7¢/ )}

6= U, ((m & 1), (6 A D))
|—91€992¢9

91 = {(7T17¢1)> ceey (7rk>¢k)}

02 = {(71, 1), (7, &)}

b=V, (ni @ ) A A )
FoL©02: ¢

9/ = U(Wi7¢i)€9 (ﬂ-ii (¢Z A ¢))
FOANG:O
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Symbolic Evaluation Rules for Expressions and Predicates

@ € {+, —, *}
Skejp:00 Skeg: b

SFov:S(w) Sk ec:(ctrue) Skei@ea: 0102

lop € {A,V}
S|_€1:01 Sl—pltqbl
Skes:0s SEp2: o Skp:¢

Skeir@ez:01 002 Skp; lop p2:¢1 lop g2 Sk —p: ¢
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Transformers for the Symbolic Evaluation

Ske:0 S, ZF s1:S1,71
S’ = S[0/v] S1,71 - 52 :S2, 1o
SSZTFv=e:S,Z7 S,ZF skip:S,Z S,ZF s1;82:S2,Z2
Skp:o

S,TFs1:S1,T1  S,TF s2:S2,T»
S" = (S1 A @)U (S2 A —¢)
7' =((¢=Ti) N (~¢ = I2))
S,ZF if(p) then s; else sy : S/, 7/

S" = S[(af, true) /v1, . .., (X, true) /vi]) (T modified in s)
S,Z  loop?(p){s}:S',T

S,Z+loop?(p){s}:S,Z S'kp :¢
S,Z F whilef(p){s}[@p/] : S/, Z A ¢

S = [(v1,true) /a1, . .., (v, true) /ak]
S" = S[(0, true) /va, . . ., (0, true) /vy
S truets:S", T S't+p:¢

F A\d.(let ¥ in (s; check(p))) : Z, ¢
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Definitions for Proof Obligations |

Proof Obligation

Given known facts Z and success condition ¢, a proof obligation is a
formula I such that

FNZE=¢ and SAT(IAI)

Cost of Proof Obligation

Let I be a proof obligation query for Z, ¢, and let [1, be a mapping from
variables to costs such that M,(a) = 1 for abstraction variable o and
Mp(v) = |Vars(¢) U Vars(Z)| for input variable v. Then,

Cost(l) = > Mp(v)

vE Vars(I)

| A
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Definitions for Proof Obligations Il

Weakest Minimum Proof Obligation

Given known facts Z and success condition ¢, a weakest minimum proof
obligation is a formula I such that

O@IMANZTE¢ and SAT(ITAI)

@ For any other I that satisfies @, either Cost(I') < Cost(I"") or
Cost(l') = Cost(MM A (T A T'VI <)
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Computing Weakest Minimum Proof Obligations

First, rewrite TANZ = ¢ asT =7 = ¢.

Cost of Partial Assignment

Let o be a partial assignment for a formula ¢ and let 1 be a mapping from
variables in ¢ to non-negative integers. The cost of partial assignment o is

Cost(o) = Z M(v)

ve Vars(o)

Minimum Satisfying Assignment
Given mapping I from variables to costs, a minimum satisfying
assignment of formula ¢ is a partial assignment o to a subset of the
variables in ¢ such that

e o(p) = true

@ Vo' such that o/(¢) = true, Cost(c) < Cost(c’)

V.
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Computing Weakest Minimum Proof Obligations Il

Minimum statisfying assignments help determine the minimum set of
variables that any proof obligation ' must contain.

Consistent Minimum Satisfying Assignment

A minimum satisfying assignment o of ¢ is consistent with ¢ if o(¢') is
satisfiable.

Assignments that falsify Z are not interesting. We want a minimum
statisfying assignment to Z = ¢ that is consistent with Z.

Interpret o as a logical formula F,. F, is a strongest proof obligation. It
assigns each variable to a concrete value.
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Computing Weakest Minimum Proof Obligations |l|

We want the weakest sufficient condition of Z = ¢ containing only
variables in o.

Lemma

Let V' be the set of variables in a minimum satisfying assignment of

T = ¢ consistent with Z, and let /' be the set of variables in T = ¢ but
not in V. We can obtain a weakest minimum proof obligation by
eliminating the quantifiers from the formula

YV. (T = ¢)
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Deciding Proof Obligation Queries

Valid Answer to Proof Obligation Query
We say that the answer to a proof obligation query I is valid iff:
@ The answer is either yes or no

o If the answer is yes, then I holds on all program executions (i.e., I' is
a program invariant)

@ If the answer is no, then there is at least one execution in which I is
violated

Let T be a proof obligation query and suppse yes is a valid answer to this
query. Then, the program is error-free.
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From Formulas to Queries

e Translate analysis variables into program expressions (easy)
@ Decompose complex queries to a series of simpler queries

o If ¢1 A ¢ is an invariant, so are ¢ and ¢»

o If ¢1 V ¢y is a witness, so are ¢ and ¢»

e Convert invariant queries to CNF and witness queries to DNF
e Treat each clause as separate, independent query

@ We learn additional facts for every subquery
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Algorithm (Given Z and ¢)

1 W:=10

2> while(true) {

3 if (Valid(Z = ¢)) return ERROR.DISCHARGED

4 if (3Ye W.UNSAT(ZAY A¢)) return ERROR.VALIDATED
5 Vi = ComputeMSA(Z = ¢, WUZ,,)

6 I = ElimQuantifier(VV4.(Z = ¢))

7 Vo, = ComputeMSA(Z = —¢p, WUZ, M)

8 T = ElimQuantifier(VVa. (T = —¢))

9

10 if (Cost(l') < Cost(T)) {

11 Q1 = FormlnvariantQuery (I")

12 if (answerto @ = YES) return ERROR_DISCHARGED
13 W:=Wwu-lr

14 } else {

15 Q> = FormWitnessQuery (7T)

16 if (answerto @ = YES) return ERROR_VALIDATED
17 T:=ZA=T

18 }

o}
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Implementation

Implemented on top of Compass analysis framework for C programs

Also reasons about heap objects, arrays and function calls

Sources of imprecisions are loops, non-linear arithmetic, inline
assembly, etc.

Allow the user to answer [ don't know

Uses own Mistral SMT solver to compute minimum satisfying
assignments.
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