
Automated Error Diagnosis Using Abductive Inference

Isil Dillig1 Thomas Dillig1 Alex Aiken2

1Department of Computer Science
College of William & Mary, Virginia, USA

2Department of Computer Science
Stanford University, CA, USA

PLDI 2012

Severin Heiniger

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 1 / 22



An Ordinary Day in a Developer’s Life

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 i f ( f l a g ) k = n ;
4 e l s e k = 1 ;
5

6 w h i l e ( i <= n ) {
7 i = i + 1 ;
8 j = j + i ;
9 }

10 i n t z = k + i + j ;
11 a s s e r t ( z > 2 ∗ n ) ;
12 }

Static analysis tool error report

Assertion z > 2 ∗ n may not always hold.

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 2 / 22



An Ordinary Day in a Developer’s Life

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 i f ( f l a g ) k = n ;
4 e l s e k = 1 ;
5

6 w h i l e ( i <= n ) {
7 i = i + 1 ;
8 j = j + i ;
9 }

10 i n t z = k + i + j ;
11 a s s e r t ( z > 2 ∗ n ) ;
12 }

Static analysis tool error report

Assertion z > 2 ∗ n may not always hold.

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 2 / 22



Manual Report Classification

Program

Some Static Analysis Success

User Decides

Genuine Bug False Alarm

Potential Error Report

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 3 / 22



Manual Report Classification

Time-consuming

User repeats all successful reasoning by tool

Error-prone

Effect

Major impediment to adoption of static analysis tools

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 4 / 22



Semi-Automated Report Classification

Program

Some Static Analysis Success

This paper: Assist User

Genuine Bug False Alarm

Potential Error Report
Inferred Invariants

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 5 / 22



Semi-Automated Report Classification

Program with Inferred Invariants
and Potential Error Report

Identify Sources of Incompleteness

Check User

Genuine Bug False Alarm

If uncertain:
Small, relevant query

Yes or No

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 6 / 22



Queries

Proof Obligation Query: Is property P an invariant?

If yes, the program is certainly error-free (false alarm)

Failure Witness Query: Can property P arise in some execution?

If yes, the program is certainly buggy

Strategy

Pose queries in order of increasing cost (easiest first) to minimize the
amount of trusted information the user must supply

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 7 / 22



We are Here

Program with Inferred Invariants
and Potential Error Report

Identify Sources of Incompleteness

Check User

Genuine Bug False Alarm

If uncertain:
Small, relevant query

Yes or No

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 8 / 22



Input

Program with parameters, local variables, conditionals and while loops

Only linear arithmetic, no function calls

While loops annotated with inferred post-condition p′:
while(p) { s } [p′ ]

Program ends with an assert (p)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 9 / 22



Identify Sources of Incompleteness

Symbolically evaluate the program. At each point in the program,
environment S maps program variables to symbolic value sets.

S(i) = {. . . , (π, φ), . . .} Under constraint φ, the value of variable i
is the symbolic expression π

Constraints φ keep values from different paths separate. π can contain

Input Variables ν For unknown program inputs

Abstraction Variables α For unknown values due to imprecisions,
e.g., after loops

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 10 / 22



Example

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 S(k) = {(0, true)} S(i) = {(0, true)} . . .
4 i f ( f l a g ) k = n ;
5 e l s e k = 1 ;
6 S(k) = {(1,¬νflag ), (νn, νflag )}
7 w h i l e ( i <= n ) {
8 i = i + 1 ;
9 j = j + i ;

10 } S(i) = {(αi , true)} S(j) = {(αj , true)}
11 i n t z = k + i + j ; S(z) = {(1 + αi + αj ,¬νflag ), (νn + αi + αj , νflag )}
12 a s s e r t (z > 2 ∗ n ) ;
13 }

abc

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 11 / 22



Example

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 S(k) = {(0, true)} S(i) = {(0, true)} . . .
4 i f ( f l a g ) k = n ;
5 e l s e k = 1 ;
6 S(k) = {(1,¬νflag ), (νn, νflag )}
7 w h i l e ( i <= n ) {
8 i = i + 1 ;
9 j = j + i ;

10 } [ i ≥ 0 ∧ i > n ] S(i) = {(αi , true)} S(j) = {(αj , true)}
11 i n t z = k + i + j ; S(z) = {(1 + αi + αj ,¬νflag ), (νn + αi + αj , νflag )}
12 a s s e r t (z > 2 ∗ n ) ;
13 }

Propagate inferred invariants as constraints on abstract variables

I = (αi ≥ 0 ∧ αi > νn ∧ νn ≥ 0)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 11 / 22



Example

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 S(k) = {(0, true)} S(i) = {(0, true)} . . .
4 i f ( f l a g ) k = n ;
5 e l s e k = 1 ;
6 S(k) = {(1,¬νflag ), (νn, νflag )}
7 w h i l e ( i <= n ) {
8 i = i + 1 ;
9 j = j + i ;

10 } [ i ≥ 0 ∧ i > n ] S(i) = {(αi , true)} S(j) = {(αj , true)}
11 i n t z = k + i + j ; S(z) = {(1 + αi + αj ,¬νflag ), (νn + αi + αj , νflag )}
12 a s s e r t (z > 2 ∗ n ) ;
13 }

Symbolically evaluate the assertion predicate

φ = (1 + αi + αj > 2 ∗ νn ∧ ¬νflag ) ∨ (νn + αi + αj > 2 ∗ νn ∧ νflag )

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 11 / 22



Result

The result is a pair of symbolic constraints

I All known invariants on abstract variables

φ Condition under which the assertion evaluates to true

Lemma

If I |= φ, then the program is error-free (assertion always succeeds)
If I |= ¬φ, then the program must be buggy (assertion always fails)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 12 / 22



Result

The result is a pair of symbolic constraints

I All known invariants on abstract variables

φ Condition under which the assertion evaluates to true

Lemma

If I |= φ, then the program is error-free (assertion always succeeds)
If I |= ¬φ, then the program must be buggy (assertion always fails)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 12 / 22



We are Here

Program with Inferred Invariants
and Potential Error Report

Identify Sources of Incompleteness

Check User

Genuine Bug False Alarm

I, φ

If uncertain:
Small, relevant query

Yes or No

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 13 / 22



Proof Obligation

Given known facts I and success condition φ, a proof obligation
is a formula Γ that – together with I – proves φ:

Γ ∧ I |= φ and SAT (Γ ∧ I)

Cost(Γ)

1 · # abstraction variables α ∈ Vars(Γ)
+ |Vars(φ) ∪ Vars(I)| · # input variables ν ∈ Vars(Γ)

The fewer variables, the better

No input variables if possible

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 14 / 22



Proof Obligation

Given known facts I and success condition φ, a proof obligation
is a formula Γ that – together with I – proves φ:

Γ ∧ I |= φ and SAT (Γ ∧ I)

Cost(Γ)

1 · # abstraction variables α ∈ Vars(Γ)
+ |Vars(φ) ∪ Vars(I)| · # input variables ν ∈ Vars(Γ)

The fewer variables, the better

No input variables if possible

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 14 / 22



Failure Witness

Given known facts I and success condition φ, a failure witness
is a formula Υ that – together with I – proves ¬φ:

Υ ∧ I |= ¬φ and SAT (Υ ∧ I)

Cost(Υ)

|Vars(φ) ∪ Vars(I)| · # abstraction variables α ∈ Vars(Υ)
+ 1 · # input variables ν ∈ Vars(Υ)

The fewer variables, the better

Prefer input variables

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 15 / 22



Weakest Minimum Queries

Weakest Minimum Proof Obligation Γ

costs less than or equal to any other proof obligation, and
is no stronger than any other proof obligations with same cost

Weakest Minimum Failure Witness Υ Dito

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 16 / 22



Ask the User

Ask the user the one with lower cost

Does Γ hold in all program executions?

Yes Program is error-free (because Γ ∧ I |= φ)
No Add ¬Γ to known witnesses and maybe ask another query

May Υ arise in some execution?

Yes Programm is buggy (because Υ ∧ I |= ¬φ)
No Add ¬Υ to known facts I and maybe ask another query

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 17 / 22



Example

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 i f ( f l a g ) k = n ;
4 e l s e k = 1 ;
5

6 w h i l e ( i <= n ) {
7 i = i + 1 ;
8 j = j + i ;
9 }

10 i n t z = k + i + j ; I = (αi ≥ 0 ∧ αi > νn ∧ νn ≥ 0)
11 a s s e r t ( z > 2 ∗ n ) ; φ = (1 + αi + αj > 2 ∗ νn ∧ ¬νflag )∨
12 } (νn + αi + αj > 2 ∗ νn ∧ νflag )

Weakest Minimum Proof Obligation Γ = (αj ≥ νn)

4 (false alarm!)

Weakest Minimum Failure Witness Υ = (¬νflag ∧ αi + αj < 0)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 18 / 22



Example

1 v o i d f o o ( i n t f l a g , u n s i g n e d i n t n ) {
2 i n t k = 0 , i = 0 , j = 0 , z = 0 ;
3 i f ( f l a g ) k = n ;
4 e l s e k = 1 ;
5

6 w h i l e ( i <= n ) {
7 i = i + 1 ;
8 j = j + i ;
9 }

10 i n t z = k + i + j ; I = (αi ≥ 0 ∧ αi > νn ∧ νn ≥ 0)
11 a s s e r t ( z > 2 ∗ n ) ; φ = (1 + αi + αj > 2 ∗ νn ∧ ¬νflag )∨
12 } (νn + αi + αj > 2 ∗ νn ∧ νflag )

Weakest Minimum Proof Obligation Γ = (αj ≥ νn) 4 (false alarm!)

Weakest Minimum Failure Witness Υ = (¬νflag ∧ αi + αj < 0)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 18 / 22



User Study: Setup

56 professional C programmers

Classify 11 uncertain error reports for real-world code as

Genuine bugs (5), or
False alarms (6), or
I don’t know

Randomly assigned to classify manually or using the new technique

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 19 / 22



User Study: Results

0 20 40 60 80 100

New Technique

Manual Classification
∅ 5 mins

PercentageCorrect I Don’t Know Wrong

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 20 / 22



User Study: Results

0 20 40 60 80 100

New Technique
∅ 1 min

Manual Classification
∅ 5 mins

PercentageCorrect I Don’t Know Wrong

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 21 / 22



Related Work

Explaining Error Traces in Model Checking
Requires counter-example, does not address false alarms

Counterexample-Guided Abstraction Refinement (CEGAR)
Learn new predicates from concrete counter-example trace
Fully automatic, but not guaranteed to terminate

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 22 / 22



Conclusion

Implementation not (yet) publicly available

Practical technique to help programmers classify error reports

Tool-agnostic

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 23 / 22



Questions

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Language

obligation so that the queries presented to the user are as small and
as general as possible. In this example, using the techniques of Sec-
tion 4, we compute a weakest minimum proof obligation as:

αj ≥ n
Thus, if the user can show that j >= n always holds at line 7, the
analysis can discharge the potential error.

Dually, to prove the presence of an error, we compute a failure
witness Υ by solving a second abductive inference problem:

I ∧Υ |= ¬φ and SAT(I ∧Υ)

In other words, a failure witness is also consistent with program
invariants, and if Υ holds in some execution, we know that the
program must have an error. Again, we are not interested in any
solution to the abductive inference problem; instead, we want to
find a weakest minimum failure witness to ensure that the queries
we compute are as small and as general as possible. For our running
example, techniques described in Section 4 yield the following
weakest minimum failure witness:

¬flag ∧ αi + αj < 0

Thus, if the user can show that i+j < 0 is possible at line 7 in an
execution where !flag holds, the analysis can validate the error.

After computing weakest minimum proof obligations and fail-
ure witnesses, our technique then decides whether it is more
promising to try to discharge the error or to validate it by com-
paring the costs of the proof obligation and failure witness. In this
example, our technique decides that it is more promising to try to
discharge the error and therefore queries the user whether j>=n is
a program invariant at line 7.

Since it is easy to show that j >= n always holds at line 7,
the analysis can immediately discharge the error. Observe that,
although the assertion condition in this example requires reasoning
about values of multiple variables i, j, k, and z, our technique
can take advantage of facts already established by the analysis to
compute a simple and intuitive query involving only variable j.

1.2 Organization and Contributions
The rest of this paper is organized as follows: Section 2 defines a
simple language in which we formalize our technique. Section 3
describes a static analysis that makes explicit potential sources of
imprecision and performs symbolic value propagation. Section 4
defines weakest minimum proof obligations and failure witnesses,
describes a technique for computing them, and presents an itera-
tive algorithm for validating or discharging error reports. Section 5
describes our implementation; Section 6 presents experimental re-
sults. Finally, Section 7 surveys related work, and Section 8 con-
cludes. In summary, this paper makes the following contributions:

• We present a new technique for semi-automatic report classifi-
cation when static analyzers are unable to verify the program.
• We define weakest minimum proof obligations and failure wit-

nesses as a technical characterization of simple, relevant facts
useful for resolving error reports.
• We present the problem of computing proof obligations and

failure witnesses as an abductive inference problem and give
a new algorithm for computing abductions in this setting.
• We show how proof obligations and failure witnesses can be

used to interact with users until a potential error is resolved.
• We perform a user study to evaluate our technique. Our results

show that the new technique is very useful both for improving
the time required to classify error reports as well as for dramat-
ically improving the accuracy of report classification. Specifi-
cally, our approach improves classification accuracy from 33%

S ` v : S(v) S ` c : c

⊕ ∈ {+,−, ∗}
S ` e1 : c1 S ` e2 : c2

S ` e1 ⊕ e2 : c1 ⊕ c2

S ` e1 : c1 S ` e2 : c2

b =

{
true if c1 � c2
false otherwise

S ` e1 � e2 : b

lop ∈ {∧,∨}
S ` p1 : b1 S ` p2 : b2

S ` p1 lop p2 : b1 lop b2

S ` p : b

S ` ¬p : ¬b
S ` e : c

S ` v = e : S[c/v] S ` skip : S

S ` p : true S ` s1 : S1

S ` if(p) then s1 else s2 : S1

S ` p : false S ` s2 : S2

S ` if(p) then s1 else s2 : S2

S ` s1 : S1 S1 ` s2 : S2

S ` s1; s2 : S2

S ` p : true S ` s : S′

S′ ` loopρ(p){s} : S′′

S ` loopρ(p){s} : S′′

S ` loopρ(p){s} : S′ S′ ` p′ : true
S ` whileρ(p){s}[@p′] : S′

S ` p : false
S ` loopρ(p){s} : S

S = [c1/a1, . . . , ck/ak][0/v1, . . . , 0/vn]
S ` s : S′ S′ ` p : b

` λ~a.(let ~v in (s; check(p)))(c1, . . . ck) : b

Figure 1. Operational semantics of the language from Section 2

to 90% and reduces the time programmers take to classify error
reports from approximately 5 minutes to under 1 minute.

2. Language
In this section, we present a simple programming language that we
use to formalize our technique:

Program P := λ~a. (let ~v in (s; check(p)))
Statement s := v = e | skip | s1; s2

| if(p) then s1 else s2

| whileρ(p){s}[@p′]?
Expression e := v | c | c ∗ e | e1 ⊕ e2 (⊕ ∈ {+,−})
Predicate p := e1 � e2 (� ∈ {<,>,=})

| p1 ∧ p2 | p1 ∨ p2 | ¬p

In this language, a program with inputs ~a and local variables ~v
consists of a statement s and a check(p) statement, which checks
whether predicate p evaluates to true. The program evaluates to
true if predicate p holds, and to false otherwise. We say that an
execution of a program P is error-free if P evaluates to true in this
execution, and buggy otherwise. Similarly, we say that program P
is error-free if P evaluates to true in all possible executions, and
buggy if P evaluates to false in some execution.

Statements in this language consist of assignments (v = e,
where v is bound in the let statement) , skip statements, sequenc-
ing (s1; s2), if statements, and while loops labeled with unique
identifiers ρ. Observe that while loops can be optionally tagged
with annotations of the form @p′, where predicate p′ corresponds
to invariants that hold after the loop. For the purposes of this paper,
these invariants may be obtained from any automatic sound static
analysis technique, such as abstract interpretation or predicate ab-
straction. We say that a program P is analyzed if all while loops
are annotated with sound post-conditions using a static analyzer.

Expressions include integer variables v, integer constants c,
and arithmetic operations. This language has an expressive family
of predicates which include comparisons between expressions, as
well as conjunction, disjunction, and negation. The operational
semantics is given in Figure 1. We omit function calls from this

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Operational Semantics of the Language

obligation so that the queries presented to the user are as small and
as general as possible. In this example, using the techniques of Sec-
tion 4, we compute a weakest minimum proof obligation as:

αj ≥ n
Thus, if the user can show that j >= n always holds at line 7, the
analysis can discharge the potential error.

Dually, to prove the presence of an error, we compute a failure
witness Υ by solving a second abductive inference problem:

I ∧Υ |= ¬φ and SAT(I ∧Υ)

In other words, a failure witness is also consistent with program
invariants, and if Υ holds in some execution, we know that the
program must have an error. Again, we are not interested in any
solution to the abductive inference problem; instead, we want to
find a weakest minimum failure witness to ensure that the queries
we compute are as small and as general as possible. For our running
example, techniques described in Section 4 yield the following
weakest minimum failure witness:

¬flag ∧ αi + αj < 0

Thus, if the user can show that i+j < 0 is possible at line 7 in an
execution where !flag holds, the analysis can validate the error.

After computing weakest minimum proof obligations and fail-
ure witnesses, our technique then decides whether it is more
promising to try to discharge the error or to validate it by com-
paring the costs of the proof obligation and failure witness. In this
example, our technique decides that it is more promising to try to
discharge the error and therefore queries the user whether j>=n is
a program invariant at line 7.

Since it is easy to show that j >= n always holds at line 7,
the analysis can immediately discharge the error. Observe that,
although the assertion condition in this example requires reasoning
about values of multiple variables i, j, k, and z, our technique
can take advantage of facts already established by the analysis to
compute a simple and intuitive query involving only variable j.

1.2 Organization and Contributions
The rest of this paper is organized as follows: Section 2 defines a
simple language in which we formalize our technique. Section 3
describes a static analysis that makes explicit potential sources of
imprecision and performs symbolic value propagation. Section 4
defines weakest minimum proof obligations and failure witnesses,
describes a technique for computing them, and presents an itera-
tive algorithm for validating or discharging error reports. Section 5
describes our implementation; Section 6 presents experimental re-
sults. Finally, Section 7 surveys related work, and Section 8 con-
cludes. In summary, this paper makes the following contributions:

• We present a new technique for semi-automatic report classifi-
cation when static analyzers are unable to verify the program.
• We define weakest minimum proof obligations and failure wit-

nesses as a technical characterization of simple, relevant facts
useful for resolving error reports.
• We present the problem of computing proof obligations and

failure witnesses as an abductive inference problem and give
a new algorithm for computing abductions in this setting.
• We show how proof obligations and failure witnesses can be

used to interact with users until a potential error is resolved.
• We perform a user study to evaluate our technique. Our results

show that the new technique is very useful both for improving
the time required to classify error reports as well as for dramat-
ically improving the accuracy of report classification. Specifi-
cally, our approach improves classification accuracy from 33%

S ` v : S(v) S ` c : c

⊕ ∈ {+,−, ∗}
S ` e1 : c1 S ` e2 : c2

S ` e1 ⊕ e2 : c1 ⊕ c2

S ` e1 : c1 S ` e2 : c2

b =

{
true if c1 � c2
false otherwise

S ` e1 � e2 : b

lop ∈ {∧,∨}
S ` p1 : b1 S ` p2 : b2

S ` p1 lop p2 : b1 lop b2

S ` p : b

S ` ¬p : ¬b
S ` e : c

S ` v = e : S[c/v] S ` skip : S

S ` p : true S ` s1 : S1

S ` if(p) then s1 else s2 : S1

S ` p : false S ` s2 : S2

S ` if(p) then s1 else s2 : S2

S ` s1 : S1 S1 ` s2 : S2

S ` s1; s2 : S2

S ` p : true S ` s : S′

S′ ` loopρ(p){s} : S′′

S ` loopρ(p){s} : S′′

S ` loopρ(p){s} : S′ S′ ` p′ : true
S ` whileρ(p){s}[@p′] : S′

S ` p : false
S ` loopρ(p){s} : S

S = [c1/a1, . . . , ck/ak][0/v1, . . . , 0/vn]
S ` s : S′ S′ ` p : b

` λ~a.(let ~v in (s; check(p)))(c1, . . . ck) : b

Figure 1. Operational semantics of the language from Section 2

to 90% and reduces the time programmers take to classify error
reports from approximately 5 minutes to under 1 minute.

2. Language
In this section, we present a simple programming language that we
use to formalize our technique:

Program P := λ~a. (let ~v in (s; check(p)))
Statement s := v = e | skip | s1; s2

| if(p) then s1 else s2

| whileρ(p){s}[@p′]?
Expression e := v | c | c ∗ e | e1 ⊕ e2 (⊕ ∈ {+,−})
Predicate p := e1 � e2 (� ∈ {<,>,=})

| p1 ∧ p2 | p1 ∨ p2 | ¬p

In this language, a program with inputs ~a and local variables ~v
consists of a statement s and a check(p) statement, which checks
whether predicate p evaluates to true. The program evaluates to
true if predicate p holds, and to false otherwise. We say that an
execution of a program P is error-free if P evaluates to true in this
execution, and buggy otherwise. Similarly, we say that program P
is error-free if P evaluates to true in all possible executions, and
buggy if P evaluates to false in some execution.

Statements in this language consist of assignments (v = e,
where v is bound in the let statement) , skip statements, sequenc-
ing (s1; s2), if statements, and while loops labeled with unique
identifiers ρ. Observe that while loops can be optionally tagged
with annotations of the form @p′, where predicate p′ corresponds
to invariants that hold after the loop. For the purposes of this paper,
these invariants may be obtained from any automatic sound static
analysis technique, such as abstract interpretation or predicate ab-
straction. We say that a program P is analyzed if all while loops
are annotated with sound post-conditions using a static analyzer.

Expressions include integer variables v, integer constants c,
and arithmetic operations. This language has an expressive family
of predicates which include comparisons between expressions, as
well as conjunction, disjunction, and negation. The operational
semantics is given in Figure 1. We omit function calls from this

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Operations on Symbolic Value Sets

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

θ =
⋃
ij((πi ⊕ π′j), (φi ∧ φ′j))
` θ1 ⊕ θ2 : θ

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

φ =
∨
ij((πi � π′j) ∧ φi ∧ φ′j)
` θ1 � θ2 : φ

θ′ =
⋃

(πi,φi)∈θ (πi, (φi ∧ φ))

` θ ∧ φ : θ′

Figure 2. Operations on symbolic value sets

S ` v : S(v) S ` c : (c, true)

⊕ ∈ {+,−, ∗}
S ` e1 : θ1 S ` e2 : θ2

S ` e1 ⊕ e2 : θ1 ⊕ θ2

Figure 3. Symbolic evaluation rules for expressions

language, as the issues raised by function calls are orthogonal
and not necessary for understanding our technique. However, our
implementation is an interprocedural analysis (see Section 5).

3. Analysis
In this section, we describe a static analysis that is performed after
a verification tool already analyzed the program, inferring the @p′

annotations on while loops and reporting a potential error. Our
analysis, which is a prerequisite for computing relevant queries to
classify the error report, has the following key characteristics:

• Values of program variables are represented by symbolic ex-
pressions consisting of constants and analysis variables.
• There are two kinds of analysis variables: input variables ν rep-

resent unknown values of program inputs, and abstraction vari-
ables α model unknown values of variables due to an impreci-
sion in the analysis. For instance, abstraction variables represent
values that may be unknown after loops.
• The analysis uses facts inferred by other analyzers, which are

annotated using the @p′ construct on loops. These invariants
are used to constrain values of abstraction variables.
• The only source of imprecision in this analysis is loops; it

performs exact symbolic value propagation on loop-free code.

Our static analysis is described in Figures 2, 3, 4, and 5. Values
of program variables are represented as symbolic expressions π:

π := ν | α | c | π1 + π2 | π1 − π2 | c ∗ π

Besides input variables ν and abstraction variables α, symbolic ex-
pressions are integer constants c, addition or subtraction of sym-
bolic expressions, and linear multiplication. Since the only impre-
cision of the static analysis for the simple language from Section 2
is due to loops, abstraction variables are only used to model the
(potentially) unknown values of program variables after loops.

In the analysis, environment S maps program variables to sym-
bolic value sets θ:

θ := 2(π,φ)

where π is a symbolic expression and φ is a constraint. Since
variables may have different symbolic values on different program
paths, the constraint φ allows the analysis to keep values on differ-
ent paths separate. For concreteness, constraints in this paper are in
the theory of of linear arithmetic over integers.

S ` e1 : θ1
S ` e2 : θ2

S ` e1 � e2 : θ1 � θ2

lop ∈ {∧,∨}
S ` p1 : φ1

S ` p2 : φ2

S ` p1 lop p2 : φ1 lop φ2

S ` p : φ

S ` ¬p : ¬φ

Figure 4. Symbolic evaluation rules for predicates

S ` e : θ
S′ = S[θ/v]

S, I ` v = e : S′, I S, I ` skip : S, I

S, I ` s1 : S1, I1
S1, I1 ` s2 : S2, I2
S, I ` s1; s2 : S2, I2

S ` p : φ
S, I ` s1 : S1, I1 S, I ` s2 : S2, I2

S′ = (S1 ∧ φ) t (S2 ∧ ¬φ)
I′ = ((φ⇒ I1) ∧ (¬φ⇒ I2))

S, I ` if(p) then s1 else s2 : S′, I′

S′ = S[(αρ1, true)/v1, . . . , (α
ρ
k, true)/vk])(~v modified in s)

S, I ` loopρ(p){s} : S′, I

S, I ` loopρ(p){s} : S′, I S′ ` p′ : φ

S, I ` whileρ(p){s}[@p′] : S′, I ∧ φ

S = [(ν1, true)/a1, . . . , (νk, true)/ak]
S′ = S[(0, true)/v1, . . . , (0, true)/vn]
S′, true ` s : S′′, I S′′ ` p : φ

` λ~a.(let ~v in (s; check(p))) : I, φ

Figure 5. Transformers for the static analysis

Figure 2 defines some useful operations on symbolic value
sets. The first rule θ1 ⊕ θ2 describes how to perform arithmetic
operations on symbolic value sets, where ⊕ ranges over +,−, ∗
and where θ is the symbolic value set representing the result of the
arithmetic operation. The second rule θ1� θ2 (where� is <,>, or
=) describes how to compare value sets θ1 and θ2. The result is a
constraint φ, which describes the condition under which θ1 is less
than, greater than, or equal to θ2. Finally, the last rule in this figure
defines what it means to conjoin a constraint φ with a value set θ.

Figures 3 and 4 describe symbolic evaluation of expressions
and predicates, and are direct analogues of the corresponding oper-
ational semantics rules in Figure 1, with integer constants replaced
by symbolic value sets and boolean constants with constraints.

The first six rules in Figure 5 describe the transformers for
statements and derive judgements of the form:

S, I ` s : S′, I′

Since statements may modify values of program variables, each
statement may modify S and produce a new symbolic store S′. The
constraints I and I′ describe invariants about abstraction variables
obtained from annotations on while loops.

The first three rules in Figure 5 are self-explanatory and are
straightforward analogues of their concrete counterparts from Fig-
ure 1. In the rule for if statements, facts that are obtained by ana-
lyzing the then branch s1 (resp. else branch s2) only hold under
the conditional p (resp. ¬p). Therefore, we first compute the sym-
bolic evaluation of conditional p as φ and conjoin φ to all facts
obtained in the then branch and ¬φ to facts obtained in the else
branch. In this rule, conjunction on symbolic stores is defined as:

∀v ∈ dom(S). (S ∧ φ)(v) = {(πj , φj ∧ φ) | (πj , φj) ∈ S(v)}

This rule also uses an (exact) join operation t on symbolic stores,
defined as:

(π, φ) ∈ S1(v) ∧ (π, φ′) ∈ S2(v)⇒ (π, φ ∨ φ′) ∈ (S1 t S2)(v)
(π, φ) ∈ Si(v) ∧ (π, ) 6∈ Sj(v)⇒ (π, φ) ∈ (S1 t S2)(v)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Symbolic Evaluation Rules for Expressions and Predicates

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

θ =
⋃
ij((πi ⊕ π′j), (φi ∧ φ′j))
` θ1 ⊕ θ2 : θ

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

φ =
∨
ij((πi � π′j) ∧ φi ∧ φ′j)
` θ1 � θ2 : φ

θ′ =
⋃

(πi,φi)∈θ (πi, (φi ∧ φ))

` θ ∧ φ : θ′

Figure 2. Operations on symbolic value sets

S ` v : S(v) S ` c : (c, true)

⊕ ∈ {+,−, ∗}
S ` e1 : θ1 S ` e2 : θ2

S ` e1 ⊕ e2 : θ1 ⊕ θ2

Figure 3. Symbolic evaluation rules for expressions

language, as the issues raised by function calls are orthogonal
and not necessary for understanding our technique. However, our
implementation is an interprocedural analysis (see Section 5).

3. Analysis
In this section, we describe a static analysis that is performed after
a verification tool already analyzed the program, inferring the @p′

annotations on while loops and reporting a potential error. Our
analysis, which is a prerequisite for computing relevant queries to
classify the error report, has the following key characteristics:

• Values of program variables are represented by symbolic ex-
pressions consisting of constants and analysis variables.
• There are two kinds of analysis variables: input variables ν rep-

resent unknown values of program inputs, and abstraction vari-
ables α model unknown values of variables due to an impreci-
sion in the analysis. For instance, abstraction variables represent
values that may be unknown after loops.
• The analysis uses facts inferred by other analyzers, which are

annotated using the @p′ construct on loops. These invariants
are used to constrain values of abstraction variables.
• The only source of imprecision in this analysis is loops; it

performs exact symbolic value propagation on loop-free code.

Our static analysis is described in Figures 2, 3, 4, and 5. Values
of program variables are represented as symbolic expressions π:

π := ν | α | c | π1 + π2 | π1 − π2 | c ∗ π

Besides input variables ν and abstraction variables α, symbolic ex-
pressions are integer constants c, addition or subtraction of sym-
bolic expressions, and linear multiplication. Since the only impre-
cision of the static analysis for the simple language from Section 2
is due to loops, abstraction variables are only used to model the
(potentially) unknown values of program variables after loops.

In the analysis, environment S maps program variables to sym-
bolic value sets θ:

θ := 2(π,φ)

where π is a symbolic expression and φ is a constraint. Since
variables may have different symbolic values on different program
paths, the constraint φ allows the analysis to keep values on differ-
ent paths separate. For concreteness, constraints in this paper are in
the theory of of linear arithmetic over integers.

S ` e1 : θ1
S ` e2 : θ2

S ` e1 � e2 : θ1 � θ2

lop ∈ {∧,∨}
S ` p1 : φ1

S ` p2 : φ2

S ` p1 lop p2 : φ1 lop φ2

S ` p : φ

S ` ¬p : ¬φ

Figure 4. Symbolic evaluation rules for predicates

S ` e : θ
S′ = S[θ/v]

S, I ` v = e : S′, I S, I ` skip : S, I

S, I ` s1 : S1, I1
S1, I1 ` s2 : S2, I2
S, I ` s1; s2 : S2, I2

S ` p : φ
S, I ` s1 : S1, I1 S, I ` s2 : S2, I2

S′ = (S1 ∧ φ) t (S2 ∧ ¬φ)
I′ = ((φ⇒ I1) ∧ (¬φ⇒ I2))

S, I ` if(p) then s1 else s2 : S′, I′

S′ = S[(αρ1, true)/v1, . . . , (α
ρ
k, true)/vk])(~v modified in s)

S, I ` loopρ(p){s} : S′, I

S, I ` loopρ(p){s} : S′, I S′ ` p′ : φ

S, I ` whileρ(p){s}[@p′] : S′, I ∧ φ

S = [(ν1, true)/a1, . . . , (νk, true)/ak]
S′ = S[(0, true)/v1, . . . , (0, true)/vn]
S′, true ` s : S′′, I S′′ ` p : φ

` λ~a.(let ~v in (s; check(p))) : I, φ

Figure 5. Transformers for the static analysis

Figure 2 defines some useful operations on symbolic value
sets. The first rule θ1 ⊕ θ2 describes how to perform arithmetic
operations on symbolic value sets, where ⊕ ranges over +,−, ∗
and where θ is the symbolic value set representing the result of the
arithmetic operation. The second rule θ1� θ2 (where� is <,>, or
=) describes how to compare value sets θ1 and θ2. The result is a
constraint φ, which describes the condition under which θ1 is less
than, greater than, or equal to θ2. Finally, the last rule in this figure
defines what it means to conjoin a constraint φ with a value set θ.

Figures 3 and 4 describe symbolic evaluation of expressions
and predicates, and are direct analogues of the corresponding oper-
ational semantics rules in Figure 1, with integer constants replaced
by symbolic value sets and boolean constants with constraints.

The first six rules in Figure 5 describe the transformers for
statements and derive judgements of the form:

S, I ` s : S′, I′

Since statements may modify values of program variables, each
statement may modify S and produce a new symbolic store S′. The
constraints I and I′ describe invariants about abstraction variables
obtained from annotations on while loops.

The first three rules in Figure 5 are self-explanatory and are
straightforward analogues of their concrete counterparts from Fig-
ure 1. In the rule for if statements, facts that are obtained by ana-
lyzing the then branch s1 (resp. else branch s2) only hold under
the conditional p (resp. ¬p). Therefore, we first compute the sym-
bolic evaluation of conditional p as φ and conjoin φ to all facts
obtained in the then branch and ¬φ to facts obtained in the else
branch. In this rule, conjunction on symbolic stores is defined as:

∀v ∈ dom(S). (S ∧ φ)(v) = {(πj , φj ∧ φ) | (πj , φj) ∈ S(v)}

This rule also uses an (exact) join operation t on symbolic stores,
defined as:

(π, φ) ∈ S1(v) ∧ (π, φ′) ∈ S2(v)⇒ (π, φ ∨ φ′) ∈ (S1 t S2)(v)
(π, φ) ∈ Si(v) ∧ (π, ) 6∈ Sj(v)⇒ (π, φ) ∈ (S1 t S2)(v)

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

θ =
⋃
ij((πi ⊕ π′j), (φi ∧ φ′j))
` θ1 ⊕ θ2 : θ

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

φ =
∨
ij((πi � π′j) ∧ φi ∧ φ′j)
` θ1 � θ2 : φ

θ′ =
⋃

(πi,φi)∈θ (πi, (φi ∧ φ))

` θ ∧ φ : θ′

Figure 2. Operations on symbolic value sets

S ` v : S(v) S ` c : (c, true)

⊕ ∈ {+,−, ∗}
S ` e1 : θ1 S ` e2 : θ2

S ` e1 ⊕ e2 : θ1 ⊕ θ2

Figure 3. Symbolic evaluation rules for expressions

language, as the issues raised by function calls are orthogonal
and not necessary for understanding our technique. However, our
implementation is an interprocedural analysis (see Section 5).

3. Analysis
In this section, we describe a static analysis that is performed after
a verification tool already analyzed the program, inferring the @p′

annotations on while loops and reporting a potential error. Our
analysis, which is a prerequisite for computing relevant queries to
classify the error report, has the following key characteristics:

• Values of program variables are represented by symbolic ex-
pressions consisting of constants and analysis variables.
• There are two kinds of analysis variables: input variables ν rep-

resent unknown values of program inputs, and abstraction vari-
ables α model unknown values of variables due to an impreci-
sion in the analysis. For instance, abstraction variables represent
values that may be unknown after loops.
• The analysis uses facts inferred by other analyzers, which are

annotated using the @p′ construct on loops. These invariants
are used to constrain values of abstraction variables.
• The only source of imprecision in this analysis is loops; it

performs exact symbolic value propagation on loop-free code.

Our static analysis is described in Figures 2, 3, 4, and 5. Values
of program variables are represented as symbolic expressions π:

π := ν | α | c | π1 + π2 | π1 − π2 | c ∗ π

Besides input variables ν and abstraction variables α, symbolic ex-
pressions are integer constants c, addition or subtraction of sym-
bolic expressions, and linear multiplication. Since the only impre-
cision of the static analysis for the simple language from Section 2
is due to loops, abstraction variables are only used to model the
(potentially) unknown values of program variables after loops.

In the analysis, environment S maps program variables to sym-
bolic value sets θ:

θ := 2(π,φ)

where π is a symbolic expression and φ is a constraint. Since
variables may have different symbolic values on different program
paths, the constraint φ allows the analysis to keep values on differ-
ent paths separate. For concreteness, constraints in this paper are in
the theory of of linear arithmetic over integers.

S ` e1 : θ1
S ` e2 : θ2

S ` e1 � e2 : θ1 � θ2

lop ∈ {∧,∨}
S ` p1 : φ1

S ` p2 : φ2

S ` p1 lop p2 : φ1 lop φ2

S ` p : φ

S ` ¬p : ¬φ

Figure 4. Symbolic evaluation rules for predicates

S ` e : θ
S′ = S[θ/v]

S, I ` v = e : S′, I S, I ` skip : S, I

S, I ` s1 : S1, I1
S1, I1 ` s2 : S2, I2
S, I ` s1; s2 : S2, I2

S ` p : φ
S, I ` s1 : S1, I1 S, I ` s2 : S2, I2

S′ = (S1 ∧ φ) t (S2 ∧ ¬φ)
I′ = ((φ⇒ I1) ∧ (¬φ⇒ I2))

S, I ` if(p) then s1 else s2 : S′, I′

S′ = S[(αρ1, true)/v1, . . . , (α
ρ
k, true)/vk])(~v modified in s)

S, I ` loopρ(p){s} : S′, I

S, I ` loopρ(p){s} : S′, I S′ ` p′ : φ

S, I ` whileρ(p){s}[@p′] : S′, I ∧ φ

S = [(ν1, true)/a1, . . . , (νk, true)/ak]
S′ = S[(0, true)/v1, . . . , (0, true)/vn]
S′, true ` s : S′′, I S′′ ` p : φ

` λ~a.(let ~v in (s; check(p))) : I, φ

Figure 5. Transformers for the static analysis

Figure 2 defines some useful operations on symbolic value
sets. The first rule θ1 ⊕ θ2 describes how to perform arithmetic
operations on symbolic value sets, where ⊕ ranges over +,−, ∗
and where θ is the symbolic value set representing the result of the
arithmetic operation. The second rule θ1� θ2 (where� is <,>, or
=) describes how to compare value sets θ1 and θ2. The result is a
constraint φ, which describes the condition under which θ1 is less
than, greater than, or equal to θ2. Finally, the last rule in this figure
defines what it means to conjoin a constraint φ with a value set θ.

Figures 3 and 4 describe symbolic evaluation of expressions
and predicates, and are direct analogues of the corresponding oper-
ational semantics rules in Figure 1, with integer constants replaced
by symbolic value sets and boolean constants with constraints.

The first six rules in Figure 5 describe the transformers for
statements and derive judgements of the form:

S, I ` s : S′, I′

Since statements may modify values of program variables, each
statement may modify S and produce a new symbolic store S′. The
constraints I and I′ describe invariants about abstraction variables
obtained from annotations on while loops.

The first three rules in Figure 5 are self-explanatory and are
straightforward analogues of their concrete counterparts from Fig-
ure 1. In the rule for if statements, facts that are obtained by ana-
lyzing the then branch s1 (resp. else branch s2) only hold under
the conditional p (resp. ¬p). Therefore, we first compute the sym-
bolic evaluation of conditional p as φ and conjoin φ to all facts
obtained in the then branch and ¬φ to facts obtained in the else
branch. In this rule, conjunction on symbolic stores is defined as:

∀v ∈ dom(S). (S ∧ φ)(v) = {(πj , φj ∧ φ) | (πj , φj) ∈ S(v)}

This rule also uses an (exact) join operation t on symbolic stores,
defined as:

(π, φ) ∈ S1(v) ∧ (π, φ′) ∈ S2(v)⇒ (π, φ ∨ φ′) ∈ (S1 t S2)(v)
(π, φ) ∈ Si(v) ∧ (π, ) 6∈ Sj(v)⇒ (π, φ) ∈ (S1 t S2)(v)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Transformers for the Symbolic Evaluation

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

θ =
⋃
ij((πi ⊕ π′j), (φi ∧ φ′j))
` θ1 ⊕ θ2 : θ

θ1 = {(π1, φ1), . . . , (πk, φk)}
θ2 = {(π′1, φ′1), . . . , (π′n, φ

′
n)}

φ =
∨
ij((πi � π′j) ∧ φi ∧ φ′j)
` θ1 � θ2 : φ

θ′ =
⋃

(πi,φi)∈θ (πi, (φi ∧ φ))

` θ ∧ φ : θ′

Figure 2. Operations on symbolic value sets

S ` v : S(v) S ` c : (c, true)

⊕ ∈ {+,−, ∗}
S ` e1 : θ1 S ` e2 : θ2

S ` e1 ⊕ e2 : θ1 ⊕ θ2

Figure 3. Symbolic evaluation rules for expressions

language, as the issues raised by function calls are orthogonal
and not necessary for understanding our technique. However, our
implementation is an interprocedural analysis (see Section 5).

3. Analysis
In this section, we describe a static analysis that is performed after
a verification tool already analyzed the program, inferring the @p′

annotations on while loops and reporting a potential error. Our
analysis, which is a prerequisite for computing relevant queries to
classify the error report, has the following key characteristics:

• Values of program variables are represented by symbolic ex-
pressions consisting of constants and analysis variables.
• There are two kinds of analysis variables: input variables ν rep-

resent unknown values of program inputs, and abstraction vari-
ables α model unknown values of variables due to an impreci-
sion in the analysis. For instance, abstraction variables represent
values that may be unknown after loops.
• The analysis uses facts inferred by other analyzers, which are

annotated using the @p′ construct on loops. These invariants
are used to constrain values of abstraction variables.
• The only source of imprecision in this analysis is loops; it

performs exact symbolic value propagation on loop-free code.

Our static analysis is described in Figures 2, 3, 4, and 5. Values
of program variables are represented as symbolic expressions π:

π := ν | α | c | π1 + π2 | π1 − π2 | c ∗ π

Besides input variables ν and abstraction variables α, symbolic ex-
pressions are integer constants c, addition or subtraction of sym-
bolic expressions, and linear multiplication. Since the only impre-
cision of the static analysis for the simple language from Section 2
is due to loops, abstraction variables are only used to model the
(potentially) unknown values of program variables after loops.

In the analysis, environment S maps program variables to sym-
bolic value sets θ:

θ := 2(π,φ)

where π is a symbolic expression and φ is a constraint. Since
variables may have different symbolic values on different program
paths, the constraint φ allows the analysis to keep values on differ-
ent paths separate. For concreteness, constraints in this paper are in
the theory of of linear arithmetic over integers.

S ` e1 : θ1
S ` e2 : θ2

S ` e1 � e2 : θ1 � θ2

lop ∈ {∧,∨}
S ` p1 : φ1

S ` p2 : φ2

S ` p1 lop p2 : φ1 lop φ2

S ` p : φ

S ` ¬p : ¬φ

Figure 4. Symbolic evaluation rules for predicates

S ` e : θ
S′ = S[θ/v]

S, I ` v = e : S′, I S, I ` skip : S, I

S, I ` s1 : S1, I1
S1, I1 ` s2 : S2, I2
S, I ` s1; s2 : S2, I2

S ` p : φ
S, I ` s1 : S1, I1 S, I ` s2 : S2, I2

S′ = (S1 ∧ φ) t (S2 ∧ ¬φ)
I′ = ((φ⇒ I1) ∧ (¬φ⇒ I2))

S, I ` if(p) then s1 else s2 : S′, I′

S′ = S[(αρ1, true)/v1, . . . , (α
ρ
k, true)/vk])(~v modified in s)

S, I ` loopρ(p){s} : S′, I

S, I ` loopρ(p){s} : S′, I S′ ` p′ : φ

S, I ` whileρ(p){s}[@p′] : S′, I ∧ φ

S = [(ν1, true)/a1, . . . , (νk, true)/ak]
S′ = S[(0, true)/v1, . . . , (0, true)/vn]
S′, true ` s : S′′, I S′′ ` p : φ

` λ~a.(let ~v in (s; check(p))) : I, φ

Figure 5. Transformers for the static analysis

Figure 2 defines some useful operations on symbolic value
sets. The first rule θ1 ⊕ θ2 describes how to perform arithmetic
operations on symbolic value sets, where ⊕ ranges over +,−, ∗
and where θ is the symbolic value set representing the result of the
arithmetic operation. The second rule θ1� θ2 (where� is <,>, or
=) describes how to compare value sets θ1 and θ2. The result is a
constraint φ, which describes the condition under which θ1 is less
than, greater than, or equal to θ2. Finally, the last rule in this figure
defines what it means to conjoin a constraint φ with a value set θ.

Figures 3 and 4 describe symbolic evaluation of expressions
and predicates, and are direct analogues of the corresponding oper-
ational semantics rules in Figure 1, with integer constants replaced
by symbolic value sets and boolean constants with constraints.

The first six rules in Figure 5 describe the transformers for
statements and derive judgements of the form:

S, I ` s : S′, I′

Since statements may modify values of program variables, each
statement may modify S and produce a new symbolic store S′. The
constraints I and I′ describe invariants about abstraction variables
obtained from annotations on while loops.

The first three rules in Figure 5 are self-explanatory and are
straightforward analogues of their concrete counterparts from Fig-
ure 1. In the rule for if statements, facts that are obtained by ana-
lyzing the then branch s1 (resp. else branch s2) only hold under
the conditional p (resp. ¬p). Therefore, we first compute the sym-
bolic evaluation of conditional p as φ and conjoin φ to all facts
obtained in the then branch and ¬φ to facts obtained in the else
branch. In this rule, conjunction on symbolic stores is defined as:

∀v ∈ dom(S). (S ∧ φ)(v) = {(πj , φj ∧ φ) | (πj , φj) ∈ S(v)}

This rule also uses an (exact) join operation t on symbolic stores,
defined as:

(π, φ) ∈ S1(v) ∧ (π, φ′) ∈ S2(v)⇒ (π, φ ∨ φ′) ∈ (S1 t S2)(v)
(π, φ) ∈ Si(v) ∧ (π, ) 6∈ Sj(v)⇒ (π, φ) ∈ (S1 t S2)(v)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Definitions for Proof Obligations I

Proof Obligation

Given known facts I and success condition φ, a proof obligation is a
formula Γ such that

Γ ∧ I |= φ and SAT (Γ ∧ I)

Cost of Proof Obligation

Let Γ be a proof obligation query for I, φ, and let Πp be a mapping from
variables to costs such that Πp(α) = 1 for abstraction variable α and
Πp(ν) = |Vars(φ) ∪ Vars(I)| for input variable ν. Then,

Cost(Γ) =
∑

v∈Vars(Γ)

Πp(v)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Definitions for Proof Obligations II

Weakest Minimum Proof Obligation

Given known facts I and success condition φ, a weakest minimum proof
obligation is a formula Γ such that

1 Γ ∧ I |= φ and SAT (Γ ∧ I)

2 For any other Γ′ that satisfies 1 , either Cost(Γ) < Cost(Γ′) or
Cost(Γ) = Cost(Γ′) ∧ (Γ 6⇒ Γ′ ∨ Γ⇔ Γ′)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Computing Weakest Minimum Proof Obligations

First, rewrite Γ ∧ I |= φ as Γ |= I ⇒ φ.

Cost of Partial Assignment

Let σ be a partial assignment for a formula φ and let Π be a mapping from
variables in φ to non-negative integers. The cost of partial assignment σ is

Cost(σ) =
∑

v∈Vars(σ)

Π(v)

Minimum Satisfying Assignment

Given mapping Π from variables to costs, a minimum satisfying
assignment of formula ϕ is a partial assignment σ to a subset of the
variables in ϕ such that

σ(ϕ) ≡ true

∀σ′ such that σ′(ϕ) ≡ true, Cost(σ) ≤ Cost(σ′)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Computing Weakest Minimum Proof Obligations II

Minimum statisfying assignments help determine the minimum set of
variables that any proof obligation Γ must contain.

Consistent Minimum Satisfying Assignment

A minimum satisfying assignment σ of ϕ is consistent with ϕ′ if σ(ϕ′) is
satisfiable.

Assignments that falsify I are not interesting. We want a minimum
statisfying assignment to I ⇒ φ that is consistent with I.

Interpret σ as a logical formula Fσ. Fσ is a strongest proof obligation. It
assigns each variable to a concrete value.

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Computing Weakest Minimum Proof Obligations III

We want the weakest sufficient condition of I ⇒ φ containing only
variables in σ.

Lemma

Let V be the set of variables in a minimum satisfying assignment of
I ⇒ φ consistent with I, and let V be the set of variables in I ⇒ φ but
not in V . We can obtain a weakest minimum proof obligation by
eliminating the quantifiers from the formula

∀V . (I ⇒ φ)

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Deciding Proof Obligation Queries

Valid Answer to Proof Obligation Query

We say that the answer to a proof obligation query Γ is valid iff:

The answer is either yes or no

If the answer is yes, then Γ holds on all program executions (i.e., Γ is
a program invariant)

If the answer is no, then there is at least one execution in which Γ is
violated

Lemma

Let Γ be a proof obligation query and suppse yes is a valid answer to this
query. Then, the program is error-free.

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



From Formulas to Queries

Translate analysis variables into program expressions (easy)

Decompose complex queries to a series of simpler queries

If φ1 ∧ φ2 is an invariant, so are φ1 and φ2

If φ1 ∨ φ2 is a witness, so are φ1 and φ2

Convert invariant queries to CNF and witness queries to DNF
Treat each clause as separate, independent query

We learn additional facts for every subquery

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 24 / 22



Algorithm (Given I and φ)

1 W := ∅
2 w h i l e (true) {
3 i f (Valid(I ⇒ φ) ) r e t u r n ERROR DISCHARGED
4 i f (∃ψ ∈W .UNSAT(I ∧ ψ ∧ φ)) r e t u r n ERROR VALIDATED
5 V1 = ComputeMSA(I ⇒ φ,W ∪ I,Πp )

6 Γ = ElimQuantifier(∀V1. (I ⇒ φ))
7 V2 = ComputeMSA(I ⇒ ¬φ,W ∪ I,Πw )

8 Υ = ElimQuantifier(∀V2. (I ⇒ ¬φ))
9

10 i f (Cost(Γ) < Cost(Υ)) {
11 Q1 = FormInvariantQuery(Γ)
12 i f (answer to Q1 = YES) r e t u r n ERROR DISCHARGED
13 W := W ∪ ¬Γ
14 } e l s e {
15 Q2 = FormWitnessQuery(Υ)
16 i f (answer to Q2 = YES) r e t u r n ERROR VALIDATED
17 I := I ∧ ¬Υ
18 }
19 }

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 23 / 22



Implementation

Implemented on top of Compass analysis framework for C programs

Also reasons about heap objects, arrays and function calls

Sources of imprecisions are loops, non-linear arithmetic, inline
assembly, etc.

Allow the user to answer I don’t know

Uses own Mistral SMT solver to compute minimum satisfying
assignments.

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 22 / 22



References

Isill Dillig, Thomas Dillig and Alex Aiken.
Automated Error Diagnosis Using Abductive Inference
Proceedings of the 33rd ACM SIGPLAN conference on Programming
Language Design and Implementation (PLDI), 181–192, 2012.

Severin Heiniger Research Topics in Software Engineering May 13th, 2013 22 / 22


	Introduction
	Identify Sources of Incompleteness
	Query-Guided Error Diagnosis
	Experiments
	Conclusion
	Appendix
	Appendix


