Objective

Motivatior

Proof-carrying code Bytecode Language

A Program Logic for Bytecode[1]

Fabian Bannwart Peter Miiller

Presented by Moritz Hoffmann

April 15, 2013

npact

Objective

Objective

A sound and complete Hoare-style logic to apply
Proof-Carrying Code on bytecode.

Motivation

Motivation

e Intermediate languages are part of standardized execution
environments, i.e. JVM and .NET.

e Formal reasoning on source level

e Improve and speed up JIT

Proof-carrying code
Proof-carrying code

e Translate verified source code to verified bytecode
e Annotate intermediate language with proofs

e Efficient run-time verification of proof carrying code

Problem
e Code is compiled to intermediate language
e Source proof must also be transformed

Goal

Develop proof-transforming compiler

Bytecode Language

Bytecode Language

Bytecode language VMg
e Used to model classes, methods and instructions
e No exception handling

e Programs are well typed

Object Store models heap
Stack
Similar to JVM and CLI bytecode instructions

Hoare-style rules for every included instruction

Program Logic

Program Logic

[The program logic| allows to formally verify that
implementations satisfy interface specifications given as
pre- and postconditions.

Method specification {P} comp {Q}
Instruction specification A+ {E;} i:[;

Method Sequence of instruction specifications
Vie{0,...,|body(T@m)| —1}: (AF{E}i: 1)

Wi {0, |body(TOm)| —1}: (AF {E} i)
A+ {Eo} body(T@m) {Epody(Tem)-1}

Program Logic
°

Method Specification

Method specification: {P} comp {Q}

comp is a method implementation T@m of a virtual
interface T : m

Support for virtual methods

Contains language independent rules to connect method
specifications to programming logic

Program Logic

Instruction Specification

Instruction specification: {E;} i: [;

{E;} is the local weakest precondition

shift and unshift model stack operations.

’ l; ‘ Wp;(/,')
pushc v unshift(Ej+1[v/s(0)])
pop X (hift(Er1))[5(0), 4
bin0pep | (Sh7E(E::1))[5(1) op 5(0))/5(1]

Other operations: pushv, goto, brtrue, checkcast,

newobj, getfield, putfield, return

Application

Application

{p = P}Math :abs
{(P>0=result = P)A(P <0 = result = —P)}

Since Math : abs is defined in a class without subclasses, we can
apply the following rule:

{p = P A 7(this) = Math A this # null} body(Math@abs) {Q}
{p = P A 7(this) = Math} Math@abs {Q}

Impact

Impact

e Development of proof-transforming compiler producing
proof-carrying code

e Foundation to understanding complication of break and
try/catch/finally clauses

Remaining issue
e Only one method parameter p is covered by the logic.

e Logic does not handle type checking

Appendix
[]

Proof Math : abs

{p = P A7(this) = Main A this # null}0 : pushv p
{(s(0) < 0=P<0)A(s(0)>0= P >0)Ap=P}l:pushcO
{(s(1) < s(0) = P <0)
AGs(1) = 5(0) = P > 0) A p = P}
{(s(0) <0=P<0)A(s(0)>0=P >0)Ap=P}3:brtrue8
{P<0Ap=P}4:pushc0
{P <0As(0)—p=—P}5:pushvp
{P<0As(l)—s(0)=—P}6:binop_
{P<0ASs(0)=—P}7:goto9
{P>0Ap=P}8:pushvp
{(P>0=5(0)=P)A(P <0=s(0)=—P)}9: pop result
{(P>0=result = P)A(P < 0= result = —P}10: return

: binops

Appendix

Transformation of Source Proofs

s < (AP} 5P) _
{P} while(e)S {—|e A P}

{P}/l : goto h
{e A P}/2 . S (W)
{P}/3 . SE(P, e)
{shift(P) N s(0) = e}ls : brtrue h

{P A —e}

Appendix
o]

[e]
o

For Further Reading I

ﬁ Fabian Bannwart and Peter Miiller.
A program logic for bytecode.

Electronic Notes in Theorelical Compuler Science,
141(1):255-273, 2005.

	Objective
	Motivation
	Proof-carrying code
	Bytecode Language
	Program Logic
	Method Specification
	Instruction Specification

	Application
	Impact
	Appendix

