
Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

A Program Logic for Bytecode[1]

Fabian Bannwart Peter Müller

Presented by Moritz Ho�mann

April 15, 2013

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Objective

A sound and complete Hoare-style logic to apply
Proof-Carrying Code on bytecode.

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Motivation

• Intermediate languages are part of standardized execution
environments, i.e. JVM and .NET.

• Formal reasoning on source level

• Improve and speed up JIT

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Proof-carrying code

• Translate veri�ed source code to veri�ed bytecode

• Annotate intermediate language with proofs

• E�cient run-time veri�cation of proof carrying code

Problem

• Code is compiled to intermediate language

• Source proof must also be transformed

Goal

Develop proof-transforming compiler

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Bytecode Language

Bytecode language VMK

• Used to model classes, methods and instructions

• No exception handling

• Programs are well typed

• Object Store models heap

• Stack

• Similar to JVM and CLI bytecode instructions

Hoare-style rules for every included instruction

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Program Logic

[The program logic] allows to formally verify that
implementations satisfy interface speci�cations given as
pre- and postconditions.

Method speci�cation {P} comp {Q}
Instruction speci�cation A ` {Ei} i : Ii

Method Sequence of instruction speci�cations
∀i ∈ {0, . . . , |body(T@m)| − 1} : (A ` {Ei} i : Ii)

∀i ∈ {0, . . . , |body(T@m)| − 1} : (A ` {Ei} i : Ii)
A ` {Eo} body(T@m) {E|body(T@m)|−1}

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Method Speci�cation

• Method speci�cation: {P} comp {Q}
• comp is a method implementation T@m of a virtual
interface T : m

• Support for virtual methods

• Contains language independent rules to connect method
speci�cations to programming logic

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Instruction Speci�cation

• Instruction speci�cation: {Ei} i : Ii
• {Ei} is the local weakest precondition
• shift and unshift model stack operations.

Ii wp1p(Ii)

pushc v unshift(Ei+1[v/s(0)])

pop x (shift(Ei+1))[s(0)/x]

binopop (shift(Ei+1))[s(1) op s(0))/s(1)]

• Other operations: pushv, goto, brtrue, checkcast,
newobj, getfield, putfield, return

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Application

{p = P}Math :abs

{(P ≥ 0⇒ result = P) ∧ (P < 0⇒ result = −P)}

Since Math : abs is de�ned in a class without subclasses, we can
apply the following rule:

{p = P ∧ τ(this) = Math ∧ this 6= null} body(Math@abs) {Q}
{p = P ∧ τ(this) = Math} Math@abs {Q}

Objective Motivation Proof-carrying code Bytecode Language Program Logic Application Impact

Impact

• Development of proof-transforming compiler producing
proof-carrying code

• Foundation to understanding complication of break and
try/catch/�nally clauses

Remaining issue

• Only one method parameter p is covered by the logic.

• Logic does not handle type checking

Appendix

Proof Math : abs

{p = P ∧ τ(this) = Main ∧ this 6= null}0 : pushv p

{(s(0) < 0⇒ P < 0) ∧ (s(0) ≥ 0⇒ P ≥ 0) ∧ p = P}1 : pushc 0

{(s(1) < s(0)⇒ P < 0)

∧(s(1) ≥ s(0)⇒ P ≥ 0) ∧ p = P}
2 : binop≥

{(s(0) < 0⇒ P < 0) ∧ (s(0) ≥ 0⇒ P ≥ 0) ∧ p = P}3 : brtrue 8

{P < 0 ∧ p = P}4 : pushc 0

{P < 0 ∧ s(0)− p = −P}5 : pushv p

{P < 0 ∧ s(1)− s(0) = −P}6 : binop−
{P < 0 ∧ s(0) = −P}7 : goto 9

{P ≥ 0 ∧ p = P}8 : pushv p

{(P ≥ 0⇒ s(0) = P) ∧ (P < 0⇒ s(0) = −P)}9 : pop result

{(P ≥ 0⇒ result = P) ∧ (P < 0⇒ result = −P}10 : return

Appendix

Transformation of Source Proofs

S

(
T

{e∧P} S {P}

{P} while(e)S {¬e ∧ P}

)
=

{P}l1 : goto l3

{e ∧ P}l2 : S
(

T
{e∧P} S {P}

)
{P}l3 : SE (P, e)

{shift(P) ∧ s(0) = e}l4 : brtrue l2
{P ∧ ¬e}

Appendix

For Further Reading I

Fabian Bannwart and Peter Müller.
A program logic for bytecode.
Electronic Notes in Theoretical Computer Science,
141(1):255�273, 2005.

	Objective
	Motivation
	Proof-carrying code
	Bytecode Language
	Program Logic
	Method Specification
	Instruction Specification

	Application
	Impact
	Appendix

