
Chair of Software Engineering

Constants, once routines,
and helper functions

these slides contain advanced
material and are optional

Basic constants

• Defining constants for basic types in Eiffel

• Usage of constants

2

class CONSTANTS

feature

 Pi: REAL = 3.1415926524

 Ok: BOOLEAN = True

 Message: STRING = "abc"

end

class APPLICATION

inherit CONSTANTS

feature

 foo do print (Pi) end

end

Pitfalls of constants

• Basic strings are not expanded, they are mutable

• There is a class READABLE_STRING_GENERAL that
exposes the read-only interface

3

class APPLICATION

feature

 Message: STRING = “abc”

 foo

 do

 Message.append (“def”)

 -- “Message” is now “abcdef”

 end

end

Constants in OO programming

• What about user-defined types?

• Need a way to initialize complex and constant objects

• Other languages use static initializers

• In Eiffel, we use once routines

4

class CONSTANTS

feature

 i: COMPLEX = ?

 Hans: PERSON = ?

 Zurich: MAP = ?

end

What are once routines?

• Executed when first called

• Result is stored

• In further calls, stored result is returned

5

foo: INTEGER

 once

 Result := factorial (10)

 end

test_foo

 do

 io.put_integer (foo) -- 3628800, calculated

 io.put_integer (foo) -- 3628800, from storage

 end

Once for whom?

• Computation is once per class hierarchy

• Flag to specify that execution is

– Once per thread (default)

– Once per system

– Once per object

6

once_per_object

 once (“OBJECT”)
 ...

 end

once_per_system

 once (“GLOBAL”)
 ...

 end

also_once_per_thread

 once
 ...

 end

once_per_thread

 once (“THREAD”)
 ...

 end

Use of once routines

• Constants for non-basic types

• Lazy initialization

• Initialization procedures

7

i: COMPLEX

 once create Result.make (0, 1) end

settings: SETTINGS

 once create Result.load_from_filesystem end

Initialize_graphics_system

 once ... end

Shared objects

• Sometimes you need to share data among objects

– Global settings, caching, operating on shared data
structures

– See singleton pattern

• Other languages use static variables for this

• In Eiffel, this can be achieved with once routines

– A once routine returning a reference always returns the
same reference

– You can create a SHARED_X class to share an object and
inherit from it when you need access to the object

8

Shared objects example

9

class SHARED_X

feature {NONE}

 global_x: attached X

 once

 create Result.make

 end

end

class X

create {SHARED_X}

 make

feature {NONE}

 make

 do ... end

end

class USER1 inherit SHARED_X

feature

 foo

 do

 global_x.do_something

 end

end

class USER2 inherit SHARED_X

feature

 bar

 do

 global_x.do_something

 end

end

Is it guaranteed that there will
only be one instance of X?

Pitfalls of once routines I

• What is the result of the following function calls?

10

double (i: INTEGER): INTEGER

 require

 i > 0

 do

 Result := i * 2

 ensure

 Result = i * 2

 end

test_double

 do

 print (double (3)) -- ?

 print (double (7)) -- ?

 print (double (-3)) -- ?

 end

once

What about now?
?
?
?

ECMA Eiffel call rule
8.23.26 Semantics: General Call Semantics
The effect of an Object_call of feature sf is, in the absence of any exception,
the effect of the following sequence of steps:
1. Determine the target object O through the applicable definition.
2. Attach Current to O.
3. Determine the dynamic feature df of the call through the applicable

definition.
4. For every actual argument a, if any, in the order listed: obtain the value v

of a; then if the type of a converts to the type of the corresponding
formal in sf, replace v by the result of the applicable conversion. Let
arg_values be the resulting sequence of all such v.

5. Attach every formal argument of df to the corresponding element of
arg_values by applying the Reattachment Semantics rule.

6. If the call is qualified and class invariant monitoring is on, evaluate the
class invariant of O’s base type on O.

7. If precondition monitoring is on, evaluate the precondition of df .
8. If df is a once routine, apply the Once Routine Execution Semantics to O

and df.
9. If the call is qualified and class invariant monitoring is on, evaluate the

class invariant of O’s base type on O.
10. If postcondition monitoring is on, evaluate the postcondition of df.
 11

Pitfalls of once routines II

• What is the result of the following function calls?

12

recursive (x: INTEGER): INTEGER

 do

 Result := 3

 if x > 1 then

 Result := Result + recursive (x - 1)

 end

 end

test_recursive

 do

 print (recursive (3)) -- ?

 print (recursive (7)) -- ?

 print (recursive (73)) -- ?

 end

once

What about now?
?
?
?

ECMA Eiffel once execution

8.23.22 Semantics: Once Routine Execution Semantics

The effect of executing a once routine df on a target object O is:

1. If the call is fresh: that of a non-once call made of the same
elements, as determined by Non-Once Routine Execution
Semantics.

2. If the call is not fresh and the last execution of f on the latest
applicable target triggered an exception: to trigger again an
identical exception. The remaining cases do not then apply.

3. If the call is not fresh and df is a procedure: no further effect.

4. If the call is not fresh and df is a function: to attach the local
variable Result to the latest applicable result of the call.

13

Pitfalls of once routines III

• Do you see a problem here?

• The $-operator can be used to get the memory
address and interface with external C code

14

array: ARRAY [INTEGER]

pointer: POINTER

 once

 create array.make_filled (0, 1, 10)

 Result := $array

 end

Once routines summary

• Once routines can be used

– To cache complex computations

– To create constants objects

– To share data

– To implement the singleton pattern

• Once routines should

– Not have arguments

– Not have complex postconditions

– Not be recursive

– Not use return type POINTER

15

Helper functions

• Helper functions are used for

– Functionality that is used by different clients

– Functionality that is not tied to an object

• Example: mathematical compuations

• Other languages use static functions

• In Eiffel, two variants

– Via inheritance

– Via expanded classes

16

Helper functions via inheritance

17

class MATH

feature {NONE}

 log_2 (v: REAL): REAL

 do

 Result := log (v) / log ({REAL} 2.0)

 end

end

class APPLICATION

inherit {NONE} MATH

feature

 foo do print (log_2 (1.2)) end

end

Helper functions via expanded

18

expanded class MATH

feature

 log_2 (v: REAL): REAL

 do

 Result := log (v) / log ({REAL} 2.0)

 end

end

class APPLICATION

feature

 foo

 local

 m: MATH

 do

 print (m.log_2 (1.2))

 end

end

