
Chair of Software Engineering

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer	

Exercise Session 4

2

Problems in Assignment-2 Solutions

Ø  Command or query?
•  connecting_lines

(a_station_1, a_station_2: STATION): V_SEQUENCE [LINE]
•  Noun phrases for query names; verb phrases for command names

Ø  Instruction separation?
•  Comma (,), space(), semicolon (;), or nothing

Ø  STRING_8 Vs. STRING_32
	 	 	 	 make	
	 	 	 	 	 	 	 	 local	
	 	 	 	 	 	 	 	 	 	 	 	 l_line:	 STRING_32	
	 	 	 	 	 	 	 	 	 	 	 	 c:	 UTF_CONVERTER	
	 	 	 	 	 	 	 	 do	
	 	 	 	 	 	 	 	 	 	 	 	 Io.read_line	
	 	 	 	 	 	 	 	 	 	 	 	 l_line	 :=	 c.utf_8_string_8_to_string_32	 (Io.last_string)	
	 	 	 	 	 	 	 	 	 	 	 	 print	 (l_line.count)	
	 	 	 	 	 	 	 	 end	

3

Today

Ø  Understanding contracts
(preconditions, postconditions, and class invariants)

Ø  Reference types vs. expanded types
Ø  Basic types
Ø  Entities and objects
Ø  Object creation
Ø  Assignment

4

Why do we need contracts at all?

•  They are executable specifications that evolve together
with the code

•  Together with tests, they are a great tool for
finding bugs

•  They help us to reason about an O-O program at
the level of classes and routines

•  Proving (part of) programs correct requires some
way to specify the way the program should
operate. Contracts are a way to specify the
program

5

Assertions

When the condition is violated, the assertion tag (if
present) is used to construct a more informative error
message.

balance_non_negative: balance >= 0

Assertion clause

Assertion tag
(optional, but

recommended)
Condition
(required)

6

clap (n: INTEGER)
 -- Clap n times and update count.

 require
 not_too_tired: count <= 10
 n_positive: n > 0

Property that a feature imposes on every client

A feature with no require clause is always applicable,

as if the precondition reads
 require

 always_OK: True

Precondition

7

clap (n: INTEGER)
 -- Clap n times and update count.

 require
 not_too_tired: count <= 10
 n_positive: n > 0

 ensure
 count_updated: count = old count + n

Property that a feature guarantees on termination

A feature with no ensure clause always satisfies
its postcondition, as if the postcondition reads

 ensure
 always_OK: True

Postcondition

8

Property that is true of the current object at
any observable point

A class with no invariant clause has a trivial

invariant
 always_OK: True

class ACROBAT
 …
invariant
 count_non_negative: count >= 0
end

Class Invariant

9

Pre- and postcondition example

Add pre- and postconditions to:

 smallest_power (n, bound: NATURAL): NATURAL
 -- Smallest x such that `n'^x is greater or equal `bound'.
 require
 ???
 do
 ...
 ensure
 ???
 end

10

One possible solution

 smallest_power (n, bound: NATURAL): NATURAL
 -- Smallest x such that `n'^x is greater or equal `bound'.
 require
 n_large_enough: n > 1
 bound_large_enough: bound > 1
 do
 ...
 ensure
 greater_equal_bound: n ^ Result >= bound
 smallest: n ^ (Result - 1) < bound
 end

11

Hands-on exercise

Add invariant(s) to the class ACROBAT_WITH_BUDDY.

Add preconditions and postconditions to feature make in

ACROBAT_WITH_BUDDY.

12

Class ACROBAT_WITH_BUDDY

class
 ACROBAT_WITH_BUDDY

inherit

 ACROBAT
 redefine
 twirl, clap, count
 end

create

 make

feature

 make (p: ACROBAT)
 do
 -- Remember `p’ being
 -- the buddy.
 end

 clap (n: INTEGER)
 do
 -- Clap `n’ times and
 -- forward to buddy.
 end

 twirl (n: INTEGER)
 do
 -- Twirl `n’ times and
 -- forward to buddy.
 end

 count: INTEGER
 do
 -- Ask buddy and return his
 -- answer.
 end

 buddy: ACROBAT

end

13

What are reference and expanded types?

Reference types: s contains the address (reference, or
location), of the object.

Example:

 s : STATION

Expanded types: p points directly to the object.
Example:

 p : POINT

s

(STATION)

p

AB3409E1

A00897BC 1.2
5.0

(POINT)

AB3409E1

14

Why expanded types?

Ø Representing basic types (INTEGER, REAL,…)

Ø Modeling external world objects realistically, i.e.
describing objects that have sub-objects (and no sharing),
for example a class WORKSTATION and its CPU.

15

How to declare an expanded type

To create an expanded type, declare the class with
keyword expanded:

expanded class COUPLE
feature -- Access

 man, woman : HUMAN
 years_together : INTEGER

end

Now all the entities of type COUPLE will automatically
become expanded:

 pitt_and_jolie: COUPLE
Expanded

Reference

?

16

Objects of reference or expanded types

Objects of reference types: they don’t exist when we
declare them (they are initially Void).

 s : STATION

We need to explicitly create them with a create
instruction.
 create s

Objects of expanded types: they exist by just declaring
them (they are never Void)
 p : POINT

Feature default_create from ANY is implicitly invoked on
them

17

Can expanded types contain reference types?

Expanded types can contain reference types, and vice
versa.

pitt_and_jolie

(SOME_CLASS)

(HUMAN)

(HUMAN) 10
...

...

18

Reference equality

a = b ?

a = b ?

1.0
2.0

(VECTOR)

a b

1.0
2.0

(VECTOR)

1.0
2.0

(VECTOR)

b a

19

Expanded entities equality

Entities of expanded types are compared by value!

a = b ?

a 1.2
5.0

(SOME_CLASS)

(POINT)
b 1.2

5.0
(POINT)

20

Expanded entities equality

(SOME_CLASS)

(HUMAN)
32

John

(HUMAN)

b

a

30
Jane

(HUMAN)
32

John

(HUMAN)
30

Jane

a = b ?

(COUPLE)
10

(COUPLE)
10

21

Expanded entities equality

(HUMAN)
32

John

(HUMAN)
30

Jane

a = b ?

(SOME_CLASS)

b

a

(COUPLE)
10

(COUPLE)
10

22

Basic types

Their only privilege is to use manifest constants to
construct their instances:

b: BOOLEAN
x: INTEGER
c: CHARACTER
s: STRING
…
b := True
x := 5 -- instead of create x.make_five
c := ‘c’
s := “I love Eiffel”

23

Basic types

Ø  Some basic types (BOOLEAN, INTEGER, NATURAL,
REAL, CHARACTER) are expanded…

a := b

Ø … and immutable (they do not contain commands to
change the state of their instances)…

a := a.plus (b) instead of a.add (b)

5 b 3 a

5 a 5 b

a + b
Alias for plus

24

Strings are a bit different

Strings in Eiffel are not expanded…

s: STRING

… and not immutable

s := “I love Eiffel”
s.append (“ very much!”)

I l o v ...

...
13

s area

count
e

25

Object comparison: = versus ~

s1: STRING = “Teddy”
s2: STRING = “Teddy”
…
s1 = s2 -- False: reference comparison on different objects

s1 ~ s2 --True
…

Now you know what to do if interested in comparing the
content of two objects

26

Initialization

Default value of any reference type is Void
Default values of basic expanded types are:

Ø  False for BOOLEAN
Ø  0 for numeric types (INTEGER, NATURAL, REAL)
Ø  “null” character (its code is 0) for CHARACTER

Default value of a non-basic expanded type is an object,
whose fields have default values of their types

(COUPLE)
0

27

Initialization

What is the default value for the following
classes?

expanded class POINT
feature x, y: REAL end

class VECTOR
feature x, y: REAL end

STRING

0.0
0.0

(POINT)

x
y

Void

Void

28

Creation procedures

Ø  Instruction create x will initialize all the fields of the
new object attached to x with default values

Ø  What if we want some specific initialization? E.g., to
make object consistent with its class invariant?

Class CUSTOMER
…

 id : STRING
invariant

 id /= Void

id

Ø  Use creation procedure:
create a_customer.set_id (“13400002”)

29

Class CUSTOMER

List one or more
creation procedures

May be used as a
regular command and as

a creation procedure

Is established by
set_id

class CUSTOMER

create set_id

feature

 id : STRING
 -- Unique identifier for Current.

 set_id (a_id : STRING)
 -- Associate this customer with `a_id’.
 require
 id_exists : a_id /= Void
 do
 id := a_id
 ensure
 id_set : id = a_id
 end

 invariant
 id_exists : id /= Void

end

30

Object creation

To create an object:

Ø  If class has no create clause, use basic form:
create x

Ø  If the class has a create clause listing one or
more procedures, use

create x.make (…)
 where make is one of the creation procedures,

and (…) stands for arguments if any.

31

Some acrobatics

class DIRECTOR
create prepare_and_play
feature
 acrobat1, acrobat2, acrobat3: ACROBAT
 friend1, friend2: ACROBAT_WITH_BUDDY
 author1: AUTHOR
 curmudgeon1: CURMUDGEON

 prepare_and_play

 do
 author1.clap (4)
 friend1.twirl (2)
 curmudgeon1.clap (7)
 acrobat2.clap (curmudgeon1.count)
 acrobat3.twirl (friend2.count)
 friend1.buddy.clap (friend1.count)
 friend2.clap (2)
 end

end

What entities are used in
this class?

What’s wrong with the
feature

prepare_and_play?

32

Some acrobatics

class DIRECTOR
create prepare_and_play
feature
 acrobat1, acrobat2, acrobat3: ACROBAT
 friend1, friend2: ACROBAT_WITH_BUDDY
 author1: AUTHOR
 curmudgeon1: CURMUDGEON

 prepare_and_play

 do
1 create acrobat1
2 create acrobat2
3 create acrobat3
4 create friend1.make_with_buddy (acrobat1)
5 create friend2.make_with_buddy (friend1)
6 create author1
7 create curmudgeon1

 end
end

Which entities are still Void
after execution of line 4?

Which of the classes
mentioned here have
creation procedures?

Why is the creation
procedure necessary?

33

Ø  Expanded classes are not creatable using a creation
feature of your choice

 expanded class POINT
 create make
 feature make do x := 5.0; y := 5.0 end
 ...
 end

Ø  But you can use (and possibly redefine) default_create
 expanded class POINT
 inherit ANY
 redefine default_create
 feature
 default_create
 do
 x := 5.0; y := 5.0
 end
 end

Custom initialization for expanded types

34

Assignment

Ø Assignment is an instruction (What other instructions do
you know?)
Ø Syntax:

a := b
Ø  where a is a variable (e.g., attribute) and b is an

expression (e.g. argument, query call);
Ø  a is called the target of the assignment and b the

source.
Ø Semantics:

Ø  after the assignment a equals b (a = b);
Ø  the value of b is not changed by the assignment.

35

Reference assignment

1.0
2.0

(VECTOR)

a
0.0
-1.0

(VECTOR)

b

a := b

a references the same object as b:
 a = b

36

Expanded assignment

a 1.2
5.0

(POINT)

b -2.0
7.8

(POINT)

a := b

The value of b is copied to a, but again:
 a = b

-2.0
7.8

37

Assignment

Explain graphically the effect of an
assignment:

(HUMAN)
32

„John“

(HUMAN)

a

30
„Jane“

(HUMAN)
25

„Dan“

(HUMAN)
24

„Lisa“

(COUPLE)
10

a := b

b

(COUPLE)
4 4

Here COUPLE is an expanded class, HUMAN is a
reference class

38

Attachment

Ø  More general term than assignment
Ø  Includes:

Ø  Assignment
a := b

Ø  Passing arguments to a routine
f (a: SOME_TYPE)

 do … end

f (b)

Ø  Same semantics

39

Dynamic aliasing

a, b: VECTOR
…
create b.make (1.0, 0.0)
a := b

Ø  now a and b reference the same object (they are two
names or aliases of the same object)
Ø  any change to the object attached to a will be reflected
when accessing it using b
Ø  any change to the object attached to b will be reflected
when accessing it using a

1.0
0.0

(VECTOR)

a

b
x
y

40

Dynamic aliasing

What are the values of a.x, a.y, b.x and
b.y after executing instructions 1-4?

 a, b: VECTOR
 …
 create a.make (-1.0, 2.0)

1 create b.make (1.0, 0.0)
2 a := b
3 b.set_x (5.0)
4 a.set_y (-10.0)

5.0
-10.0

(VECTOR)

a

b
x
y

41

Meet Teddy

