E,H Ziirich

Chair of Software Engineering

Einfihrung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 7

News (Reminder)

Mock exam next week!

» Attendance is highly recommended (and worth one
pointl)

> The week after we will discuss the results

> Assignment 7 due on November 13

Today

» TInheritance
> Genericity

Inheritance ©

Principle:
Describe a new class as extension or specialization of an

existing class
(or several with multiple inheritance)

If Binherits from A

> As modules: all the services of A4 are available in B
(possibly with a different implementation)

> As types: whenever an instance of A is required, an
instance of B will be acceptable
(“is-a” relationship)

Let's play Lego! ©

BRICK

LEGO_BRICK

LEGO_BRICK WITH_HOLE LEGO_BRICK SLANTED

5

Class BRICK

deferred class
BRICK

feature
width: INTEGER
depth: INTEGER
height: INTEGER
color: COLOR

volume: INTEGER
deferred
end
end

Class LEGO _BRICK

class
LEGO BRICK
‘Inheri’r all features of!
class BRICK. inherit
BRICK
feature

number_of_nubs: INTEGER

New feature, number
of nubs

volume: INTEGER
do
Result := ...

Implementation of end
volume. end

Class LEGO BRICK SLANTED

class
LEGO BRICK SLANTED

inherit
LEGO BRICK

redefine
The feature volume is volume
going to be redefined end

(=chc/mged). The ffea’rur'e
volume comes from
feature
LRGN volume: INTEGER
do
Result - ...
end

end

Class LEGO BRICK WITH HOLE

class
LEGO BRICK WITH_HOLE

inherit
LEGO BRICK

redefine
The feature volume is volume
going to be redefined end

(=chc/mged). The ffea’rur'e
volume comes from
feature
LRGN volume: INTEGER
do
Result - ...
end

end

Inheritance Notation

Notation:
Deferred * *)
Effective + BRICK volume

Redefinition ++

+

LEGO_BRICK

volume+

volume++

LEGO_BRICK_WITH_HOLE LEGO_BRICK_SLANTED

Deferred

> Deferred

>
>

Deferred classes can have deferred features.

A class with at least one deferred feature must
be declared as deferred.

A deferred feature does not have an
implementation yet.

Deferred classes cannot be instantiated and
hence cannot contain a create clause.

Can we have a deferred class with no deferred
features?

Effective

> Effective

> Effective classes do not have deferred features
(the “standard case”).

> Effective routines have an implementation of
their feature body.

12

Precursor

> If a feature was redefined, but you still wish to call
the old one, use the Precursor keyword.

volume: INTEGER
do
Result := Precursor - ...
end

13

A more general example of using Precursor ©

-- Class A
' 1: TYPE _A): TYPE R .
ATV
--Class C routine ++
routine (a_argl : TYPE_A): TYPE_R
local

[_loc : TYPE_R D routine s

-- pre-process

|_loc := Precursor {B} (a_argl)
-- Not allowed: I_loc := Precursor {A} (a_argl)
-- post-process

do

end

14

Today

>
> Genericity

15

Genericity - motivation

> Assume we want to create a list class capable of
storing objects of any type.

class
LIST -- First attempt

feature | We could choose ANY
as the item type

put: (a_item: ANY) ——
do
-- Add item to the list
end

item: ANY
do
-- Return the first item in the list
end

-- More feature for working with the list

end

16

Working with this list — first attempt ©

insert_strings (a_list_of_strings. LIST)

do : :
a_list_of_strings.put(“foo”) EHer'e we are lnSCPTIHg'
a_list_of_strings.put(12); an INTEGER

a_list_of_strings.put{“foo”)
end

print_strings (a_list_of_strings. LIST)
local
|_printme: STRING
do
across a_list_of_strings as / loop
[_printme := litem
fo.put_string (I_printme
end
end

17

Working with this list — the right way ©

insert_strings (a_list_of_strings. LIST) Still nobody detects

do .
a_list_of_strings.put(“foo”) this problem

a_list_of_strings.put(12);

This solution works, but

a_list_of_strings.put(*foo”) wouldn't it be nice o detect
end this mistake at compile time?
print_strings (a_list_of_strings. LIST)
local L Correct. This
; Lcurrent_item: ANY synctactical construct
° . . is called 'object test'.
across a_list_of_strings as / loop

| _current_item = [item 7/

if attached {STRING} |_current_item as itemstring then
io.put_string (itemstring)
else
io.put_string (“The list contains a non-string item!”)
end
end

end 18

Genericity

» Genericity lets you parameterize a class. The
parameters are types. A single class text may be
reused for many different types.

19

Genericity

-

‘ Abs’rr'ac‘rih
[]

Inheritance

Genericity

/

Type parameterization

_

\

Type parameterization

EEEEEENEEN LIST—OF— Illll*
PERSONS

)

LINKED_LIST

OF_CARS

_

Specialization

20

S G

A generic list (! Formal generic parameter I

class LIST [] feature In the class body, G
extend (x:6) is a valid type name

last : G ...
Query /ast returns an
end object of type G

To use the class: obtain a generic derivation, e.g.

! Actual generic parameter |

cities: LIST [|[CITY]]

21

A generic list with constraints

class
STORAGE [G]> RESOURCE

inherit ‘ constrained generic parameter |

LIST [G]

feature
consume__all
do

from startuntil after

loop
Item.consume
forth
end
end
end

The feature itemis |IS
of type G. We cannot
assume consume.

assume this.

22

Type-safe containers

» Using genericity you can provide an implementation of
type safe containers.

x: ANIMAL

animal_list: LINKED_LIST [ANIMAL]
a_rock: MINERAL

animal_list.put (a_rock) -- Does this rock?

23

Definition: Type

We use types to declare entities, as in
xX: SOME_TYPE
With the mechanisms defined so far, a type is one of:
> A non-generic class eg. METRO_STATION

> A generic derivation, i.e. the name of a class
followed by a list of types, the actual generic
parameters, in brackets (also recursive)
eqg. LIST[ARRAY[METRO_STATIONI]]

LIST [LIST [CITY]]
TABLE [STRING, INTEGER]

24

So, how many types can | possibly get?

Two answers, depending on what we are talking about:

» Static types

Static types are the types that we use while writing
Eiffel code to declare types for entities (arguments,
locals, return values)

» Dynamic types

Dynamic types on the other hand are created at run-
time. Whenever a new object is created, it gets assigned
to be of some type.

25

Static types

class EMPLOYEE
feature
name. STRING
birthday. DATE
end

class DEPARTMENT
feature

staff: LIST[EMPLOYEE]
end

©

bound by the program text:

EMPLOYEE
STRING

DATE
DEPARTMENT

LIST[G]
becomes LIST[EMPLOYEE]

26

Object creation, static and dynamic types

class TEST_DYNAMIC CREATION
feature
ref_a. A, ref_b: B
-- Suppose B, with creation feature make_b,
-- inherits from A, with creation feature make_a

do_something
do
create ref_a.make_a
-- Static and dynamic type is A

create {B} ref_amake_b
-- Static type is A, dynamic type is B

create ref_b.make_b
ref_a :=ref_b
end
end

27

Dynamic types: another example ©

class SET[&] feature

powerset: SETLSET[G]] is Dynamic types from i_th_power :
do SET[ANY]
create Result
-- More computation.. SET[SET[ANY]]
end SETISET[SETIANY]]]

i_th_power (i: INTEGER): SETLANY]
require / >= 0
local n: INTEGER

do
Result := Current
from n:= 1 until n> /loop
Result := Result.powerset
ni.=n+1
end
end
end

From http://www.eiffelroom.com/article/fun_with_generics I

28

