

# Einführung in die Programmierung

Prof. Dr. Bertrand Meyer

Vorlesung 5: Invarianten und Logik

## Erinnerung: Verträge



## In Verbindung mit einem Feature:

- Vorbedingungen
- Nachbedingungen

### In Verbindung mit einer Klasse:

> Klasseninvariante

## Verträge



```
remove_all_segments
-- Alle Stationen ausser der ersten entfernen.

ensure
nur_eine_bleibt: count = 1
beide_enden_gleich: first = last
```

```
append (s: STATION)
-- s am Ende der Linie hinzufügen.
ensure
neue_station_ist_letzte: last = s
eine_mehr: count = old count + 1
Zusicherungen
```





Die Invariante drückt Konsistenzbedingungen aus, die zwischen Abfragen in der Klasse erfüllt sein müssen.

```
invariant
    anzahl_positiv: count > 0
    definition_von_first: first = i_th (1)
```

definition\_von\_last: last = i\_th(count)

# Anwendungen von Verträgen

0

- 1. Korrekte Software
- 2. Dokumentation der Software, im Speziellen Dokumentation der Programmierschnittstelle.
- 3. Testen & Fehlerbeseitigung

(Später noch mehr!)

Laufzeiteffekt: Einstellung im Compiler (siehe Projects -> Settings in EiffelStudio)

# Verträge in anderen Sprachen



Java: Java Modeling Language (JML), iContract etc.

C#: Spec# (Erweiterung durch Microsoft Research)

UML: Object Constraint Language

Python

C++: Nana

etc.

## Logik



Programmieren heisst logisch denken. Logik ist die Wissenschaft des logischen Denkens.

Wir benutzen Logik tagtäglich.

"Sokrates ist ein Mensch.

Alle Menschen sind sterblich.

Daher muss Sokrates sterblich sein."

# Logisches Denken und Programmieren

## Logik ist die Grundlage von:

- Mathematik: Beweise sind nur gültig, falls sie den Regeln der Logik genügen.
- > Softwareentwicklung:
  - Bedingungen in Verträgen:

"x darf nicht null sein, so dass wir  $\frac{x+7}{x}$  berechnen können."

Bedingungen in Programmen:
 "Falls i positiv ist, führe diese Instruktion aus." (Mehr dazu in einer späteren Lektion)

### Boole'sche Ausdrücke



Eine Bedingung wird durch einen Boole'schen Ausdruck ausgedrückt.

#### Ein solcher besteht aus:

- Boole'schen Variablen (Bezeichner, die Boole'sche Werte bezeichnen)
- Boole'schen Operatoren (not, or, and, =, implies)

### Und repräsentiert mögliche

 Boole'sche Werte (Wahrheitswerte, entweder True oder False)

# Beispiele



Beispiele von Boole'schen Ausdrücken: (mit *rain\_today und cuckoo\_sang\_last\_night* als Boole'sche Variablen):

- rain\_today
   (eine Boole'sche Variable ist ein Boole'scher Ausdruck)
- > not rain\_today
- (not cuckoo\_sang\_last\_night) implies rain\_today

(Mittels Klammern bildet man Unterausdrücke.)

## Die Negation (not)



| a     | not a |
|-------|-------|
| True  | False |
| False | True  |

Für jeden Boole'schen Ausdruck e und alle Werte von Variablen gilt:

- Entweder e oder not e hat den Wahrheitswert True.
- Entweder e oder not e hat den Wahrheitswert False. (Prinzip des ausgeschlossenen Dritten)
- > e und not e können nicht beide den Wahrheitswert True haben.

(Satz des Widerspruchs)

## Die Disjunktion (or)



| a     | Ь     | a or b |
|-------|-------|--------|
| True  | True  | True   |
| True  | False | True   |
| False | True  | True   |
| False | False | False  |

Der or - Operator ist nicht-exklusiv

Der or - Operator ist kommutativ

### Disjunktionsprinzip:

Eine or-Disjunktion hat den Wahrheitswert True, ausser beide Operanden haben den Wert False.

## Die Konjunktion (and)

| <b>(</b> ) |
|------------|
|------------|

| a     | Ь     | a and b |
|-------|-------|---------|
| True  | True  | True    |
| True  | False | False   |
| False | True  | False   |
| False | False | False   |

Der and-Operator ist kommutativ.

#### Dualität von and und or:

- (a and b) = not( (not a) or (not b) )
- (a or b) = not((not a) and (not b))

### Konjunktionsprinzip:

Eine and-Konjunktion hat den Wahrheitswert False, ausser beide Operanden haben den Wert True.

## Komplexere Ausdrücke



Auch komplexere Boole'sche Ausdrücke sind möglich.

### Beispiele:

```
a and (b and (not c))
not (not (not (not a)))
```





Eine Belegung für eine Menge von Variablen: eine bestimmte Wahl von Wahrheitswerten (True oder False) für jede Variable.

Eine Belegung erfüllt einen Ausdruck, falls der Wahrheitswert des Ausdrucks True ist.

Eine Wahrheitstabelle für einen Ausdruck mit n Variablen hat

- $\rightarrow$  n+1 Spalten
- > 2<sup>n</sup> Zeilen





| a     | Ь     | not a | a or b | a and b |
|-------|-------|-------|--------|---------|
| True  | True  | False | True   | True    |
| True  | False |       | True   | False   |
| False | True  | True  | True   | False   |
| False | False |       | False  | False   |

## **Tautologien**

0

Tautologie: Ein Boole'scher Ausdruck, der für jede mögliche Belegung den Wahrheitswert True hat.

### Beispiele:

- $\rightarrow$  a or (not a)
- $\rightarrow$  not (a and (not a))
- $\rightarrow$  (a and b) or ((not a) or (not b))

# Widersprüche und Erfüllbarkeit



Widerspruch: Ein Boole'scher Ausdruck, der für alle möglichen Belegungen den Wahrheitswert False hat. Beispiele:

> a and (not a)

Erfüllbarer Ausdruck: Ein Ausdruck ist erfüllbar, sofern er für mindestens eine Belegung den Wahrheitswert True hat.

- Jede Tautologie ist erfüllbar.
- > Jeder Widerspruch ist unerfüllbar.

# Äquivalenz (=)



| а     | Ь     | a = b |
|-------|-------|-------|
| True  | True  | True  |
| True  | False | False |
| False | True  | False |
| False | False | True  |

```
Der = Operator ist kommutativ.
```

$$(a = b \text{ hat denselben Wert wie } b = a)$$

Der = Operator ist reflexiv.

(a = a ist eine Tautologie für jedes a)

#### Substitution:

Für alle Ausdrücke u, v und e gilt: Falls u = v eine Tautologie ist und e' der Ausdruck ist, den man erhält, wenn man in e jedes Vorkommen von u durch v ersetzt, dann ist e = e' eine Tautologie.

## De Morgan'sche Gesetze



De Morgan'sche Gesetze: Tautologien

- $\triangleright$  (not (a or b)) = ((not a) and (not b))
- $\triangleright$  (not (a and b)) = ((not a) or (not b))

Weitere Tautologien (Distributivität):

- $\rightarrow$  (a and (b or c)) = ((a and b) or (a and c))
- $\rightarrow$  (a or (b and c)) = ((a or b) and (a or c))

# Syntaxkonvention und Vorrangregeln

0

Vorrangregeln (höchster Vorrang zuerst): not, and, or, implies (wird später vorgestellt), = and und or sind assoziativ:

- $\rightarrow$  a and (b and c) = (a and b) and c
- $\rightarrow$  a or (b or c) = (a or b) or c

## Stilregeln:

Wenn Sie einen Boole'schen Ausdruck schreiben, können Sie folgende Klammern weglassen:

- Die Klammern auf beiden Seiten des "=", falls der gesamte Ausdruck eine Äquivalenz ist.
- Die Klammern um aufeinanderfolgende elementare Terme, falls sie durch den gleichen assoziativen Operator getrennt sind.

## Die Implikation (implies)



| а     | Ь     | a implies b |
|-------|-------|-------------|
| True  | True  | True        |
| True  | False | False       |
| False | True  | True        |
| False | False | True        |

Für jedes a, b gilt: a implies b = (not a) or bIn a implies b ist a der Vordersatz, b der Nachsatz.

## Implikationsprinzip:

- Eine Implikation hat den Wahrheitswert True, ausser der Vordersatz hat den Wert True und der Nachsatz hat den Wert False.
- > Zudem: Immer True falls der Vordersatz False ist.

# Implikationen in natürlichen Sprachen

0

implies hat in natürlichen Sprachen oft die Bedeutung von Kausalität (Wenn... dann...).

- > "Wenn das Wetter schön ist, gehen wir baden."
- "Wenn du dieses Getränk ins Handgepäck nimmst, lassen sie dich nicht ins Flugzeug."

# Ein häufiges Missverständnis über Implikationen ()

Immer wenn a False ist, ergibt a implies b True, unabhängig von **b**:

- "Falls heute Mittwoch ist, ist 2+2=5."
- "Falls 2+2=5, ist heute Mittwoch."

Beide der obigen Implikationen ergeben True.

Die Fälle, in denen der Vordersatz False ist, sagen nichts über den Wahrheitswert des Nachsatzes aus.

# Die Umkehrung der Implikation (1)



## Im Allgemeinen gilt folgendes nicht:

## Ein (falsches!) Beispiel:

"Alle Zürcher, die am See wohnen, sind reich. Ich wohne nicht am See, also bin ich nicht reich."

```
live_near_lake implies rich
[1]
(not live_near_lake) implies (not rich)
[2]
```

## Die Umkehrung der Implikation (2)



#### Korrekt:

```
a \text{ implies } b = (\text{not } b) \text{ implies } (\text{not } a)
```

## Beispiel:

> "Alle Leute, die am See wohnen, sind reich. Alice ist nicht reich, also kann sie nicht in Küsnacht wohnen."

```
live_near_lake implies rich =
     (not rich) implies (not live_near_lake)
```





# Semi-strikte Boole'sche Operatoren (1)



Ein Beispielausdruck (x ist eine ganze Zahl):

$$\frac{x+7}{x} > 1$$

False für x < 0Undefiniert für x = 0

# Semi-strikte Boole'sche Operatoren (2)



#### ABER:

> Division durch Null: x darf nicht 0 sein.

$$(x \neq 0)$$
 and  $(((x + 7) \neq x) > 1)$ 

False für x < 0

False für x = 0

# Semi-strikte Boole'sche Operatoren (3)



#### ABER:

Unser Programm würde während der Auswertung der Division abstürzen.

Wir brauchen eine nicht-kommutative Version von and (und or):

Semi-strikte Boole'sche Operatoren

# Semi-strikte Operatoren (and then, or else)

0

a and then b ergibt dasselbe wie a and b falls a und b definiert sind, und ergibt immer False wenn a den Wert False hat.

a or else b ergibt dasselbe wie a or b falls a und b definiert sind, und ergibt immer True wenn a den Wert True hat.

$$(x = 0)$$
 and then  $(((x + 7) / x) > 1)$ 

Semi-strikte Operatoren ermöglichen es uns, eine Auswertungsreihenfolge zu definieren (von links nach rechts)

Wichtig für Programmierer, da undefinierte Objekte zu Programmabstürzen führen können!

## Normale vs. Semi-strikte Boole'sche Operatoren (9)

#### Benutzen Sie...

- normale boole'sche Operatoren (and und or), falls Sie garantieren können, dass beide Operanden definiert sind.
- and then, falls eine Bedingung nur dann Sinn ergibt, wenn eine andere wahr ist.
- or else, falls eine Bedingung nur dann Sinn ergibt, wenn eine andere falsch ist.

### Beispiel:

"Falls Sie nicht ledig sind, muss Ihr Ehepartner den Vertrag unterschreiben."

is\_single or else spouse\_must\_sign

## Semi-strikte Implikation



### Beispiel:

"Falls Sie nicht ledig sind, muss Ihr Ehepartner den Vertrag unterschreiben."

(not is\_single) implies spouse\_must\_sign

Definition von implies: in unserem Fall immer semi-strikt!

 $\rightarrow$  a implies b = (not a) or else b



| Schlüsselwort in Eiffel | Mathematisches Symbol |
|-------------------------|-----------------------|
| not                     | ~ oder ¬              |
| or                      | V                     |
| and                     | ^                     |
| =                       | $\Leftrightarrow$     |
| implies                 | $\Rightarrow$         |

## Aussagen- und Prädikatenkalkül



## Aussagenkalkül:

Eigenschaft p gilt für ein einziges Objekt.

#### Prädikatenkalkül:

Eigenschaft p gilt für mehrere Objekte.

## Ein allgemeineres or



G: eine Gruppe von Objekten, p: eine Eigenschaft or: Ist p für mindestens ein Objekt in G erfüllt? Kann man an mindestens einer Haltestelle der Linie 8 auf eine andere Linie umsteigen?

Haldenbach.is\_exchange or ETH\_Universitaetsspital.is\_exchange or Haldenegg.is\_exchange or ... (alle Stationen der Linie 10)

Der Existenzquantor: exists oder 3

3 s: Line10.stations | s.is\_exchange

"Es gibt eine Haltestelle s in *Line10.stations* so dass *s.is\_exchange* wahr ist."

# Ein allgemeineres and



and: Ist p für jedes Objekt in G erfüllt? Sind alle Haltestellen der Linie 8 Haltestellen, an denen man umsteigen kann?

Haldenbach.is\_exchange and ETH\_Universitatetsspital.is\_exchange and Haldenegg.is\_exchange and ...

(alle Stationen der Linie 10)

Der Allquantor: for\_all oder ∀
∀ s: Line10.stations | s.is\_exchange

"Für alle s in Line 10. stations gilt s.is\_exchange."

## Ausdrücke mit dem Existenzquantor



#### Ein Boole'scher Ausdruck:

3 s: EINE\_MENGE | s.eine\_eigenschaft

True genau dann, wenn mindestens ein Element von EINE\_MENGE die Eigenschaft eine\_eigenschaft erfüllt.

#### Beweise:

- True: Finden Sie ein Element in EINE\_MENGE, welches die Eigenschaft erfüllt.
- False: Beweisen Sie, dass kein Element von EINE\_MENGE die Eigenschaft erfüllt. (Sie müssen also alle Elemente überprüfen.)

## Ausdrücke mit dem Allquantor



#### Ein Boole'scher Ausdruck:

∀ s: EINE\_MENGE | s.eine\_eigenschaft

True genau dann, wenn jedes Element von EINE\_MENGE eine\_eigenschaft erfüllt.

#### Beweise:

- True: Beweisen Sie, dass jedes Element von EINE\_MENGE die Eigenschaft erfüllt. (Sie müssen also alle Elemente überprüfen.)
- False: Finden Sie ein Element von EINE\_MENGE, welches die Eigenschaft nicht erfüllt.

#### **Dualität**



Die Verallgemeinerung des De Morgan'schen Gesetzes:

```
not (\exists s: EINE\_MENGE \mid P) = \forall s: EINE\_MENGE \mid not P
```

not  $(\forall s: EINE\_MENGE \mid P) = \exists s: EINE\_MENGE \mid not P$ 

## Leere Mengen



3s: EINE\_MENGE | eine\_eigenschaft
Falls EINE\_MENGE | leer ist: immer False

∀s: EINE\_MENGE | eine\_eigenschaft

Falls EINE\_MENGE leer ist: immerTrue

## Was wir heute gesehen haben:



- Die Logik als Werkzeug des logischen Denkens
- > Boole'sche Operationen und ihre Wahrheitstabellen
- Eigenschaften von Boole'schen Operatoren: Benutzen Sie keine Wahrheitstabellen!
- Das Prädikatenkalkül: Logische Aussagen über Mengen
- > Semi-strikte Boole'sche Operatoren

### Lesen Sie auf nächste Woche...



### Kapitel 1 bis 6

Lesen Sie im Speziellen das Kapitel 5 (Logik), da wir nur kurz auf den in "Diskrete Mathematik" behandelten Teil eigegangen sind und uns auf die Anwendungen in der Programmierung konzentriert haben.