ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

Mock Exam 1

ETH Zurich
November 6, 2013

Name:

Group:
Question 1 / 10
Question 2 / 14
Question 3 / 16
Total / 40




ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

1 Multiple choice (10 points)

Put checkmarks in the checkboxes corresponding to the correct statements. There is at least
one correct answer per question. A correctly checked or unchecked box is worth 0.5 points. An
incorrectly checked or unchecked box is worth 0 points. Completely unanswered questions are
worth 0 points.

Example:

Which of the following statements are true?

a. The sun is a mass of incandescent gas. X 0.5 points
b. 2x4=38 O 0 points
c. “Rosti” is a kind of sausage. X 0 points
c. C is an object-oriented programming language. [J 0.5 points

1. Control structures and recursion.

a. If we know that a loop decreases its variant and that it never goes below 5, [
then we know that the loop terminates.
b. The loop invariant may be violated during the loop initialization (before O
entering the loop itself).
c. The loop invariant tells us how many times the loop will be executed. ([l
d. In Eiffel a procedure can have an empty body (do end). (Il
e. A loop can always be rewritten as a finite sequence of conditional statements [
and compound statements.
2. Inheritance and polymorphism.
a. All classes in Eiffel implicitly inherit from class OBJECT. (]
b. At runtime a variable can be attached to an object, whose dynamic type O
inherits from the variables’s static type.
¢. At runtime a variable can be attached to an object, whose dynamic type is [
the same as the variables’s static type.
d. At runtime a variable can be attached to an object, whose dynamic type is [
an ancestor of the variables’s static type.
e. For an object obj, the feature call 0bj. is_equal (0bj) can return False. a
3. Objects and classes
a. All entities store references to run-time objects. O
b. Different entities can reference the same object. O
c. Clients of a class X can see all features declared in class X. |
d. A class needs to tell its clients whether a query is an attribute or a function. [
e. Objects can be created from every class. O
4. Design by Contract
a. The creation procedure only needs to ensure that the invariant of the created O
object holds at the end of the procedure body.
b. Every procedure ensures that the postcondition True holds. O
c. The class invariant needs to hold before every procedure call. ]
d. A procedure pp, that redefines another procedure p, needs to ensure the O
postcondition of procedure p.
e. A procedure pp, that redefines another procedure p, can provide a precondition O

that is stronger than the one given by procedure p.



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

Solution

1. Control structures and recursion

a. If we know that a loop decreases its variant and that it never goes below 5, X
then we know that the loop terminates.
b. The loop invariant may be violated during the loop initialization (before X
entering the loop itself).
c. The loop invariant tells us how many times the loop will be executed. ([l
d. In Eiffel a procedure can have an empty body (do end). X
e. A loop can always be rewritten as a finite sequence of conditional statements [
and compound statements.
2. Inheritance and polymorphism
a. All classes in Eiffel implicitly inherit from class 0BJECT. ]
b. At runtime a variable can be attached to an object, whose dynamic type X
inherits from the variables’s static type.
c. At runtime a variable can be attached to an object, whose dynamic type is X
the same as the variables’s static type.
d. At runtime a variable can be attached to an object, whose dynamic type is O
an ancestor of the variables’s static type.
e. For an object obj, the feature call obj.is_equal(obj) can return False. X
3. Objects and classes
a. All entities store references to run-time objects. O
b. Different entities can reference the same object. X
c. Clients of a class X can see all features declared in class X. |
d. A class needs to tell its clients whether a query is an attribute or a function. [J
e. Objects can be created from every class. O
4. Design by Contract
a. The creation procedure only needs to ensure that the invariant of the created O
object holds at the end of the procedure body.
b. Every procedure ensures that the postcondition True holds. X
c. The class invariant needs to hold before every procedure call. (Il
d. A procedure pp, that redefines another procedure p, needs to ensure the X
postcondition of procedure p.
e. A procedure pp, that redefines another procedure p, can provide a precondition O

that is stronger than the one given by procedure p.



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

2 Inheritance and Polymorphism (14 Points)

Classes SCIENTIST, COMPUTER_SCIENTIST, BIOLOGIST, and PET shown below are part
of an application for managing scientists’ social life on the web.

COMPUTER_SCIENTIST BIOLOGIST

Figure 1: BON Diagram

deferred class
2 SCIENTIST

4 feature { NONE} —— Initialization

6 make (a-name: STRING)

—— Initialize Current with ‘a_name’.

8 require
a_name_exists: a-name /= Void and then not a_name.is_empty
10 do
name := a_name
12 ensure
name_set: name = a_name
14 end
16 feature —— Access

18 name: STRING

—— Current’s name.

20
feature —— Basic operations
22
introduce
24 —— Print info about self.
do
26 0. put_-new_line
print (®My name is ” + name + 75 )
28 end
end
1 class
COMPUTER_SCIENTIST
3



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer Fall 2013
inherit
5 SCIENTIST
redefine
7 introduce
end
9
create
11 make
13 feature —— Basic operations
introduce
15 —— Print info about self.
do
17 Precursor
print ("I am a computer scientist.”)
19 end
end
class

2 BIOLOGIST

4 inherit
SCIENTIST
6 rename
introduce as express
8 redefine
express
10 end
12 create

make_with_pet
14
feature { NONE} —— Initialization
16 make_with_pet (a_name: STRING; a_pet: PET)
—— Initialization for ‘Current’.

18 require
name_exists: a_name /= Void and then not a_name.is_empty
20 pet_exists : a_pet /= Void
do
22 make (a_name)
pet = a_pet
24 ensure
name_set: name = a_name
26 pet_set: pet = a_pet
end
28
feature —— Access
30 pet: PET
—— Current biologist’s pet.
32
feature —— Basic operations



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

34 express
—— Print info about self.

36 do
Precursor
38 print ("I am a biologist. ”)
print (I have a pet. Its name is ” + pet.name + ».”)
40 end
end
1 class
PET
3
create
5 make

7 feature { NONE} —— Initialization
make (pet-name: STRING)

9 —— Initialization for ‘Current’.

require

11 pet_name_exists: pet_-name /= Void and then not pet_name.is_empty
do

13 name = pet_name
ensure

15 pet_name_set: name = pet_name
end

17

feature —— Access

19 name: STRING
—— Current pet’s name.
21
feature —— Basic operations
23 introduce
—— Print info about self.

25 do
10. put_new_line
27 print (”My name is ” + name + ” and I tend to be afraid.”)
end
29 end

Indicate, for each of the code fragments below, if it compiles by checking the corresponding
box. If the code fragment does not compile, explain why this is the case and clearly mark the
line that does not compile. If the code fragment compiles, specify the text that is printed to the
console when the code fragment is executed.

Given the following variable declarations:

a_scientist : SCIENTIST
a_computer_scientist: COMPUTER_SCIENTIST
a_biologist : BIOLOGIST

Example 1:
(create { PET}.make (““Bob”)).introduce



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

Does the code compile? X Yes J No
Output/error description My name is Bob and I tend to be afraid.

Example 2:
Bob.introduce
Does the code compile? [ Yes X No
Output/error description The code does not compile, because "Bob” is an unknown (not
declared) identifier.
Grading Scheme

1 Pt: For stating correctly whether it compiles/doesn’t compile.
1 Pt: For providing the correct output (if it compiles) or the reason why it doesn’t compile.

Task 1

create a_scientist.make (““Theo”)
a_scientist . introduce

Does the code compile? [ Yes J No
Output/error description

Does the code compile? [ Yes X No
Output/error description

Creation instruction applies to target of a deferred type.

Task 2

create a_computer_scientist.make (*‘Heidi”)
a_computer_scientist . introduce

Does the code compile? [ Yes J No
Output/error description

Does the code compile? X Yes J No
Output/error description

My name is Heidi; I am a computer scientist.

Task 3

a_scientist := create { COMPUTER_SCIENTIST}.make (*‘Helen”)
a_scientist . introduce



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2013

Does the code compile? [ Yes J No
Output/error description

Does the code compile? X Yes 0 No
Output/error description
My name is Helen; I am a computer scientist.

Task 4

a_scientist := create { COMPUTER_SCIENTIST}.make (‘“Hal”)
a_computer_scientist := a_scientist
a_computer_scientist . introduce

Does the code compile? [ Yes J No
Output/error description

Does the code compile? [ Yes X No
Output/error description
Source of assignment is not compatible with target.

Task 5

create a_biologist . make_with_pet (“‘ Reto”, create { PET}.make (* Toby”))
a_biologist . express

Does the code compile? [ Yes O No
Output/error description

Does the code compile? X Yes J No
Output/error description
My name is Reto; I am a biologist. I have a pet. Its name is Toby.

Task 6

create a_biologist . make_with_pet (‘“ Kandra’, create { PET}.make (‘‘Tom”))
a_computer_scientist := a_biologist
a_computer_scientist . introduce

Does the code compile? [ Yes U No
Output/error description



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

Does the code compile? [ Yes X No
Output/error description

Source of assignment not compatible with target.

Task 7

a_biologist := create { BIOLOGIST}.make_with_pet (““Elmo”, create { PET}.make (‘‘Hex
’7))

a_scientist = a_biologist
a_scientist . pet. introduce

Does the code compile? [ Yes U No
Output/error description

Does the code compile? [ Yes X No
Output/error description

Unknown identifier ‘pet’



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

3 Programming + Contracts (16 points)

In this task you are going to implement several operations for a generic class SET [G].

A set is a collection of distinct objects. Every element of a set must be unique; no two
members may be identical. All set operations preserve this property. The order in which the
elements of a set are listed is irrelevant (unlike for a sequence or tuple). Therefore the two sets
{5,10,12} and {10,12,5} are identical.

There are several fundamental operations for constructing new sets from given sets.

e Union: The union of A and B, denoted by A U B, is the set of all elements that are
members of either A or B.

e Intersection: The intersection of A and B, denoted by A N B, is the set of all elements
that are members of both A and B.

o Relative complement of B in A (also called the set-theoretic difference of A and B),
denoted by A\B (or A — B), is the set of all elements that are members of A but not
members of B.

The Jaccard index (or coefficient) measures similarity between sample sets, and is defined
as the size of the intersection divided by the size of the union of the sample sets (see Figure 2).
If both sets are empty the Jaccard coefficient is defined as 1.0.

_|AnB]

J(4,B) = |AU B|

Figure 2: Jaccard index definition for non-empty sets A and B.

Your task is to fill in the gaps of class SET [G] below. Please note:
e Your code should satisfy the contracts and provide new contracts where necessary.
e The set should never contain Void elements.

e The number of dotted lines does not indicate the number of missing contract clauses or
code instructions.

e The implementation of class SET [G] is based on a list. The list uses object comparison,
so features like has and prune use object equality instead of reference equality. You can
use the across syntax to iterate over the elements of a LIST. The following features of
class LIST may be useful:

class LIST [G] feature
has (v: G): BOOLEAN

—— Does current include ‘v’?

extend (v: G)
—— Add ‘v’ to the end.

prune (v: G)
—— Remove an occurrence of ‘v’, if any.

—— Other features are omitted.
end

10



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

class

SET [G]

create
make_empty

feature { NONE} —— Initialization

make_empty

—— Create empty Current.

do
create {ARRAYED_LIST} content.make (0)
content.compare_objects

ensure
empty_content: content.is_empty

end

feature —— Access
count: INTEGER
—— Cardinality of the current set.
do
Result := content.count
end
is_empty: BOOLEAN

—— Is current set empty?
do

end
has (v: G): BOOLEAN
—— Does current set contain ‘v’?7
require



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

end
add (v: G)
—— Add ‘v’ to the current set.
require

ensure

end
remove (v: G)
—— Remove ‘v’ from the current set.
require

ensure

12



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

end
duplicate: like Current
—— Deep copy of Current.
do
create Result.make_empty
across content as ¢
loop
Result.add (c.item)
end
ensure
same_size: Result.count = count
same_content: across content as ¢ all Result.has (c.item) end
end
feature —— Set operations.
union (another: like Current): like Current
—— Union product of the current set and ‘another’ set.
require

13



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

ensure

intersection (another: like Current): like Current
—— Intersection product of the current set and ‘another’ set.
require

ensure

end
difference (another: like Current): like Current

—— Set—theoretic difference of the current set and ‘another’ set.
require

14



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

ensure

end
feature —— Set metrics.
jaccard_index (another: like Current): REAL 6/
—— Jaccard similarity coefficient between current set and ‘another’ set.
require



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2013

ensure

feature { NONE} —— Implementation

content: LIST[G]
—— Items of the set.

invariant

content_exists: content /= Void
content_object_comparison: content.object_comparison
non_negative_cardinality: count >= 0

end

3.1 Solution

class

SET [G]

create
make_empty

feature { NONE} —— Initialization

make_empty
—— Create empty Current.
do
create content.make (0)
content. compare_objects
ensure
empty_content: content.is_empty

16



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2013

end
feature —— Access

count: INTEGER
—— Cardinality of the current set .
do
Result := content.count
end

is_empty: BOOLEAN
—— Is current set empty?
do
Result := count =0
end

has (v: G): BOOLEAN
—— Does current set contain ‘v'?
require
v /= Void
do
Result := content.has (v)
end

add (v: G)
—— Add ‘v’ to the current set.
require
v /= Void
do
if not has (v) then
content. extend (v)
end
ensure
in_set_already : old has (v) implies (count = old count)
added_to_set: not old has (v) implies (count = old count + 1)
end

remove (v: G)

—— Remove ‘v’ from the current set.

require
v /= Void

do
content. prune (v)

ensure
removed_count_change: old has (v) implies (count = old count — 1)

not_removed_no_count_change: not old has (v) implies (count = old count)

item_deleted: not has (v)
end

duplicate: like Current

—— Deep copy of Current.
do

17



ETHZ D-INFK Introduction to Programming — Mock Exam
Prof. Dr. B. Meyer Fall 2013

create Result.make_empty

across content as ¢

loop

Result.add (c.item)

end
ensure

same_size: Result.count = count

same_content: across content as ¢ all Result.has (c.item) end
end

feature —— Set operations.

union (another: like Current): like Current

—— Union product of the current set and ‘another’ set.
require

another /= Void
do

Result := another.duplicate

across content as ¢

loop

Result.add (c.item)

end
ensure

not_smaller: Result.count >= count and Result.count >= another.count
end

intersection (another: like Current): like Current
—— Intersection product of the current set and ‘another’ set .
require
another /= Void
do
create Result.make_empty
across content as ¢
loop
if another.has (c.item) then
Result.add (c.item)
end
end
ensure
not_bigger: Result.count <= count and Result.count <= another.count
end

difference (another: like Current): like Current

—— Set—theoretic difference of the current set and ‘another’ set.
require

another /= Void
do

create Result.make_empty

across content as ¢

loop

if not another.has (c.item) then
Result.add (c.item)

18



ETHZ D-INFK Introduction to Programming — Mock Exam

Prof. Dr. B. Meyer

Fall 2013

end
end
ensure
not_bigger_than: Result.count <= count
not_smaller_than: Result.count >= count — another.count
end

feature —— Set metrics.

jaccard_index (another: like Current): REAL 6/
—— Jaccard similarity coefficient between current set and ‘another’ set.
require
another /= Void
do
if not (is_empty and another.is_empty) then
Result := intersection (another).count / union (another).count
else
Result := 1.0
end
ensure
bounds: Result >= 0.0 and Result <= 1.0
empty_case: (is_.empty and another.is_empty) implies Result = 1.0
end

feature { NONE} —— Implementation

content: ARRAYED_LIST|G]
—— Items of the set.

invariant
content_exists : content /= Void
content_object_comparison: content.object_comparison

non_negative_cardinality : count >= 0

end

19



	Multiple choice (10 points)
	Inheritance and Polymorphism (14 Points)
	Programming + Contracts (16 points)
	Solution


