
ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

Mock Exam 2

ETH Zurich

December 4, 2013

Name:

Group:

Question 1 / 10
Question 2 / 14
Question 3 / 16
Total / 40

1

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

1 Multiple choice (10 points)

Put checkmarks in the checkboxes corresponding to the correct statements. There is at least
one correct answer per question. A correctly checked or unchecked box is worth 0.5 points. An
incorrectly checked or unchecked box is worth 0 points. Completely unanswered questions are
worth 0 points.

Example:

Which of the following statements are true?
a. The sun is a mass of incandescent gas. � 0.5 points
b. 2× 4 = 8 � 0 points
c. “Rösti” is a kind of sausage. � 0 points
c. C is an object-oriented programming language. � 0.5 points

Solution

1. Data structures.
a. Hashtables map keys to values. �
b. Arrays provide constant-time (O(1)) access in the worst case. �
c. Hashtables are commonly implemented using binary search trees. �
d. Every node in a linked list stores a reference to the next node, if it exists. �
e. Binary trees provide O(log n) time access in the worst case. �

2. Inheritance and polymorphism.
a. In Eiffel, some classes do not share a common ancestor. �
b. If class B inherits from class A, all of A’s features are available to it. �
c. It is impossible to inherit from two classes directly. �
d. Depending on the dynamic type of x, two calls to x. f may execute different
instructions.

�

e. If class B inherits from class A, then type A conforms to type B. �

3. Objects and classes
a. All types are either reference or expanded. �
b. If an object is of an expanded type, its fields cannot be modified at runtime. �
c. Suppliers of class C can use all the features of class C. �
d. A class can be both a supplier and a client. �
e. If C is a deferred class, then no entity can exist in a program with static type
C.

�

4. Design by Contract
a. An empty postcondition is equivalent to the postcondition True. �
b. An empty precondition is equivalent to the precondition False. �
c. When reasoning about a creation procedure make, you are allowed to assume
that the class invariant of the object being created holds at the beginning of
make.

�

d. The invariant of a descendant class implies the invariant of its ancestor. �
e. A (non-creation) procedure with an empty contract and an empty body is
correct.

�

2

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

2 Quadratic Contracts (14 points)

As you probably remember from the school math course, a quadratic equation is an equation of
the form

ax2 + bx + c = 0,

where x is a variable, a, b, c ∈ R are the coefficients, with a 6= 0.
The standard way of solving a quadratic equation is to first calculate its discriminant ∆. If

∆ > 0 the equation has two real solution, if ∆ = 0 — a single real solution and if ∆ < 0 — no
real solutions.

2.1 Your Task

Below you will find a skeleton of a class that stores and solves quadratic equations (uninteresting
routine bodies are omitted). The class also contains mathematical functions that are useful in
the specification and/or implementation of the main features. Your task is to fill in the contracts
(preconditions, postconditions and class invariants) according to the description given above and
the header comments of the features. Note that the number of dotted lines does not indicate
the number of contract clauses you have to provide.

You can use the following operations on real numbers: +, −, ∗, /, >, ≥, <, ≤. Do not
use precise equality (=), as it produces unexpected results on machine floating point numbers.
Instead use the function approx (x, y: REAL): BOOLEAN defined below, which determines
whether two real numbers are equal with finite precision ε (in other words |x− y| < ε).

class
QUADRATIC EQUATION

create
make

feature {NONE} −− Initialization
make (coef a, coef b , coef c : REAL)

−− Create an equation with coefficients ‘ coef a ’, ‘ coef b ’, and ‘coef c ’.
−− Do not solve the equation yet.

require
coef a nonzero : not approx (coef a, 0.0)

do
...

ensure
a set : approx (a, coef a)
b set : approx (b, coef b)
c set : approx (c, coef c)
no solutions yet : solution count = 0

end

feature −− Coefficients
a, b, c: REAL

−− Quadratic, linear and constant coefficients .

feature −− Math
abs (x: REAL): REAL

−− Absolute value of ‘x’.
do

3

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

...
ensure

correct result positive : x >= 0.0 implies approx (Result, x)
correct result negative : x < 0.0 implies approx (Result, −x)

end

approx (x, y: REAL): BOOLEAN
−− Is ‘x’ equal to ‘y’ with precision ‘ epsilon ’?

do
...

ensure
correct result : Result = (abs (x − y) < epsilon)

end

epsilon : REAL = 1.e−10
−− Precision with which reals are compared.

sqrt (x: REAL): REAL
−− Square root of ‘x’.

require
x non negative: x >= 0.0

do
...

ensure
correct square : approx (Result ∗ Result, x)

end

feature −− Solutions
solution count : INTEGER

−− Number of solutions.

solution (i : INTEGER): REAL
−− Solution number ‘i’.

require
i not too small : i >= 1
i not too large : i <= solution count

do
if i = 1 then

Result := x 1
else

Result := x 2
end

ensure
is solution : approx (a ∗ Result ∗ Result + b ∗ Result + c, 0.0)

end

feature −− Basic operations
solve

−− Solve the equation and store correct number of solutions in ‘ solution count ’.
local

d: REAL
do

4

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

d := delta
if approx (d, 0) then

solution count := 1
x 1 := − b / (2 ∗ a)

elseif d > 0 then
solution count := 2
x 1 := (−b + sqrt (d)) / (2 ∗ a)
x 2 := (−b − sqrt (d)) / (2 ∗ a)

end
ensure

not approx (delta, 0.0) and delta < 0.0 implies solution count = 0
approx (delta , 0.0) implies solution count = 1
not approx (delta, 0.0) and delta > 0.0 implies solution count = 2

end

delta : REAL
−− Discriminant of the equation.

do
...

end

feature {NONE} −− Implementation
x 1 , x 2 : REAL

−− Solutions.

invariant
a nonzero: not approx (a, 0.0)

end

5

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

3 Recursion: Deleting directories (16 Points)

In this question you will work with the FILE class, which represents both directories and regular
files. You can iterate through the files contained in a directory using an internal cursor:

from
directory . start

until
directory . after

loop
−− Do something with ‘directory.item’
directory . forth

end

The delete command of class FILE physically deletes the file from disk and changes the value
of the exists query on the corresponding FILE object to False. For a directory this command
only works if the directory is physically empty (i.e. no files physically exist in the directory).

3.1 Task 1

Take a look at the following procedure delete all . It deletes a given directory with all its content
using recursion:

delete all (directory : FILE)
2 require

directory /= Void and then (directory.exists and directory.is directory)
4 do

from
6 directory . start

until
8 directory . after

loop
10 if directory .item. is directory then

delete all (directory .item)
12 else −− regular file

directory .item. delete
14 end

directory . forth
16 end

directory . delete
18 ensure

not directory . exists
20 end

Your task is to rewrite delete all so that it does not use recursion (the procedure is not
allowed to call itself). You are not allowed to add new features. You are only allowed to call
those features of class FILE that are already used in the recursive implementation of delete all .

You can use the class LIST for this task. An excerpt is given at the end of the question.

Solution

Version 1

delete all (directory : FILE)

6

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

2 require
directory /= Void and then (directory.exists and directory.is directory)

4 local
directories : LIST [FILE]

6 cur directory : FILE
do

8 −− delete all files
from

10 create directories
directories .extend back (directory)

12 directories . start
until

14 directories . after
loop

16 cur directory := directories .item
from

18 cur directory . start
until

20 cur directory . after
loop

22 if cur directory .item. is directory then
directories .extend back (cur directory .item)

24 else −− normal file
cur directory .item. delete

26 end
cur directory . forth

28 end
directories . forth

30 end
−− delete all directories

32 from
directories . finish

34 until
directories . before

36 loop
directories .item. delete

38 directories .back
end

40 ensure
not directory . exists

42 end

Version 2

delete all (directory : FILE)
2 require

directory /= Void and then (directory.exists and directory.is directory)
4 local

directories : LIST [FILE]
6 cur directory : FILE

do
8 from

7

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

create directories
10 directories .extend back (directory)

until
12 directories .is empty

loop
14 cur directory := directories . last

directories .remove back
16

from
18 cur directory . start

until
20 cur directory . after

loop
22 if cur directory .item. is directory then

−− Save the current directory and restart the loop
24 −− with the subdirectory as ‘cur directory’

directories .extend back (cur directory)
26 cur directory := cur directory .item

cur directory . start
28 else −− normal file

cur directory .item. delete
30 cur directory . forth

end
32 end

34 cur directory . delete
end

36 ensure
not directory . exists

38 end

3.2 Task 2

With the following example directory and the invocation

delete all (create {FILE}.make (”C:\Temp\to del”))

please give the order in which the files will be deleted for (a) the given recursive algorithm and
(b) your non-recursive algorithm (e.g.: 3, 6, 7, 8, 9, 2, 5, 4, 1).

1 C:\Temp\to del
2 C:\Temp\to del\1
3 C:\Temp\to del\1\foo.txt
4 C:\Temp\to del\2
5 C:\Temp\to del\2\3
6 C:\Temp\to del\2\3\foobar.txt
7 C:\Temp\to del\2\bar.txt
8 C:\Temp\to del\another file. txt
9 C:\Temp\to del\file. txt

Solution

a) 3, 2, 6, 5, 7, 4, 8, 9, 1
b) 8, 9, 3, 7, 6, 5, 4, 2, 1

8

ETHZ D-INFK
Prof. Dr. B. Meyer

Introduction to Programming – Mock Exam
Fall 2013

3.3 LIST [G] (Excerpt)

class LIST [G]

feature −− Access
first : like item

−− Item at first position

item: G
−− Current item

last : like item
−− Item at last position

feature −− Status report
after : BOOLEAN

−− Is there no valid cursor position to the right of cursor?

before : BOOLEAN
−− Is there no valid cursor position to the left of cursor?

is empty: BOOLEAN
−− Is the list empty?

feature −− Cursor movement
back

−− Move to previous item.

finish
−− Move cursor to last position. (Go before if empty.)

forth
−− Move cursor to next position.

start
−− Move cursor to first position . (Go after if empty.)

feature −− Element change
extend back (v: like item)

−− Add ‘v’ to end. Do not move cursor.

extend front (v: like item)
−− Add ‘v’ to beginning. Do not move cursor.

remove back
−− Remove last item. Move cursor after if on last .

remove front
−− Remove first item. Move cursor before if on first .

end −− class LIST

9

	Multiple choice (10 points)
	Quadratic Contracts (14 points)
	Your Task

	Recursion: Deleting directories (16 Points)
	Task 1
	Task 2
	LIST [G] (Excerpt)

