
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

Assignment 1: Control and obstacle avoidance

ETH Zurich

Due: Thursday, 24.10.2013 at 13:00

It’s time to put your new robot into use. You would like your robot to go to places as you
command, such as fetching beer from the refrigerator. Unfortunately, your apartment is not
empty. You don’t want to have to tell your robot how to avoid every wall and furniture that
may lay in the robot’s way; instead, you would like your robot to use its sensor to avoid them
as it sees necessary.

1 Robot control

1.1 Background

The main objective of robot control is to calculate solutions for the proper corrective action from
the controller that result in system stability, that is, once the system reaches the target point,
the system will stay within a certain distance from the target point without oscillating around
it. Control algorithms can be open loop or closed loop (feedback). In open loop control, you
control the robot without any feedback from the internal or external sensors. Feedback control,
on the other hand, uses internal or external sensing to determine the current error between the
actual and desired state of the robot.

Proportional-Integral-Derivative (PID) control [1] is a popular feedback control design. The
proportional term is proportional to the error between the desired and actual system outputs
and controls how quickly the robot reacts to the error. The integral term is proportional to
both the magnitude of the error and the duration of the error and accelerates the movement
of the process towards the desired output and eliminates the residual steady-state error. The
derivative term is proportional to the slope of the error over time and improves settling time
and stability of the robot.

Mathematically, the PID controller is

u(t) = Kp e(t) +Ki

∫ t

0

e(τ) dτ +Kd
d

dt
e(t) (1)

where u(t) is the control output; Kp, Ki, and Kd are control gains for the proportional, integral,
and derivative terms; e is the error between the desired value and measured value; t is the current
time; and, τ is the total time from time 0 to the current time t.

We can make a robot go to a desired position(goal) by controlling its heading θrobot towards
the goal, as shown in Figure 1. Given the robot’s position (xr, yr) at time t, the heading error
θerror between the robot and the goal position (xg, yg) is

θerror = θgoal − θrobot = arctan(
yg − yr
xg − xr

)− θrobot. (2)

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

e r ro r

(xr , yr)

(xg , yg)

g o a l

ro b o t

Figure 1: Control output θ

1.2 Task

Write a PID controller for Thymio II in Roboscoop to control its heading. Your code should
take desired goal position as input and control the heading towards the goal using the PID
controller.

1.2.1 Hints

• Robot odometry: roboscoop thymio navigation driver.py publishes robot’s odometry
at time t and sends velocity command (vx, vz) to the robot. Your job is to send appropriate
velocity commands based on the robot’s odometry.

• Goal tolerance: Consider including a threshold such that the robot stops moving when it
is within a threshold of the goal.

• Linear velocity: Consider making the linear velocity depend on the angular velocity. This
will make the robot slow down when it needs to make a big turn and have a smaller turning
radius.

2 Obstacle avoidance

2.1 Background

Obstacle avoidance is the process of satisfying a control objective without colliding into obsta-
cles. Obstacle avoidance should be written such that in the case of obstacles, the robot makes
appropriate motions around the obstacles while trying to achieve the goal following the shortest
path. If there are no obstacles, the robot should move directly towards the goal location.

TangentBug [2] is an obstacle avoidance algorithm in the Bug [3] algorithm family. The
Bug algorithms combine local planning algorithms with global planning algorithm. With a
minimal introduction of a global model, the Bug algorithms ensure that the purely reactive local
planning algorithms can converge to the desired goal globally. TangentBug is a Bug algorithm,
specifically-designed for range data. The basic idea behind the algorithm is as follows:

1. Move toward the goal T until:

• If the goal T is reached, stop.

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

vdesired

vwall

vrobot

ddesired

dcurrent

(x0 , y0)

(x1 , y1)

(x2 , y2)

Figure 2: Control output θ for boundary following

• If an obstacle in the direction towards to goal is detected, go to step 2.

2. Choose a boundary-following direction and move along the obstacle while recording the
minimum distance dmin(T) to the goal T until:

• The goal is reached. Stop.

• If the leave condition holds, i.e., the robot see no obstacle at Vleave such that
d(Vleave, T) < dmin(T), go to step 3.

• If the robot has completed a loop around the obstacle, stop and report that the target
is unreachable.

3. Perform the transition phase. Move towards Vleave until reaching a point Z such that
d(Z, T) < dmin(T), then go to step 1.

In boundary-following, the goal is to keep robot’s heading parallel to the wall while at the
same time keeping the robot a constant distance away from the wall. Figure 2 shows the basic
concept behind boundary following. Taking (x1, y1) and (x2, y2) as the two closest sensor values
to the robot, we can estimate the closest wall vwall as

vwall =

(
x2 − x1
y2 − y1

)
. (3)

The vector perpendicular to the wall is then

vrobot =

(
y2 − y1
−(x2 − x1)

)
. (4)

We can now calculate the distance dcurrent from the robot to the wall vwall as a projection

of the vector vsensor =

(
x1 − x0
y1 − y0

)
from the robot origin (x0, y0) to a point (x1, x2) on the wall

vwall to a unit vector v̂robot, i.e.,

dcurrent = |v̂robot · vsensor| =
(y2 − y1)(x1 − x0)− (x2 − x1)(y1 − y0)√

(y2 − y1)2 + (x2 − x1)2
. (5)

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

goal

Vleave

Figure 3: Transitioning to the Vleave

Given the desired distance ddesired between the wall and the robot, we can now compute the
heading θ for the robot from v̂wall and v̂robot as

θ = arctan(
vθ,y
vθ,x

)− θrobot, (6)

where
vθ = ddesiredv̂wall + (dcurrent − ddesired)v̂robot (7)

Note that if the vectors are computed with respect to the robot’s coordinate frame, then
θrobot is zero.

At some point, there is no more obstacle on the robot’s way to the goal. The location in
which the robot can go out of the obstacle avoidance is Vleave as shown in Figure 3. This exit
point Vleave is the first free space that ensures that the robot is closer to the goal than it has
been, i.e., d(Vleave, T) < dmin(T). Once the robot moves to this exit position Vleave, it will be
closer to the goal.

2.2 Task

Write TangentBug obstacle avoidance algorithm in Roboscoop. The TangentBug algorithm
requires three distinctive behaviors: going to the goal, avoid obstacle (following a wall), and
transitioning from obstacle avoidance to going to the goal. Optionally, implement an aseba mes-
sage to change robot’s color and use the message to indicate the robot’s current state/behavior
through its color.

2.3 Hints

Thymio’s range sensors are limited in number and range. Consider the following modifications
to the original TangentBug algorithm.

• Sensor calibration: Be sure to calibrate properly all the sensors before starting the
controller implementation.

• Obstacle detection: The original algorithm is designed for a point robot, but Thymio
has volume. A minimum of three sensors must be unblocked in the direction of travel for
Thymio to travel safely.

• Obstacle avoidance: In the obstacle avoidance mode select different distance thresholds
for each sensor (when detecting an obstacle) or a unique threshold (if it exists) that you
are sure is inside the working range of all the sensors. This is because the detection range

4

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

for one sensor can be much lower than the others. Therefore, you must always ensure
that all the thresholds you set/use for the control are inside the working range of all the
sensors that you use to control the device. Otherwise, if the controller uses a threshold
that is outside the range of one/more sensors, then the controller is going to behave in
crazy ways and the controller would be unstable or not robust.

• Unreachable goal: Loop closure is a difficult problem and requires tracking of robot’s
trajectory and good sensory information. Consider a simple solution in which your algo-
rithm detects when the robot comes near the starting point of obstacle avoidance after it
has been significantly away from it.

3 Grading

3.1 In-class demonstration (20 points)

On Thursday, 24.10.2013, during the exercise session, your implementation will be tested on the
following two tasks:

1. Go to goal (10 points)

2. Go to goal while avoiding an obstacle (10 points)

For each task, you will be given a point (x, y) between (−1m,−1m) and (1m, 1m) as the
goal and a linear velocity between 0.05m/s and 0.1m/s.

The grading scheme for each task is as follows:

Accuracy Restart Bumping State indicator
Task 1 - -
Task 2

• Accuracy: Position control to the goal

– Error of more than 30%: 0 point

– Error of more than 27% up to 30%: 1 point

– Error of more than 24% up to 27%: 2 points

– For every 3% reduction of error: +1 point

– Error of 3% or less: 10 points

– Example: Given (0.5, 0) as the goal, a robot that arrives at (0.43, 0) as the goal will
receive 6 points.

• Restart: You can restart the robot up to three times.

– Once: no penalty

– Two to three times: -2 points

• Bumping into the obstacle (for task 2 only)

– Bonus point: No bumping: +1 points

– One to two times: no penalty

– Three to four times: -1 pt

– Five or more: -2 points

• Bonus points: change robot’s color to indicate its state: +2 points (for task 2 only)

5

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

– Yellow for going to goal

– Red for boundary following

– Blue for transitioning to the goal

– Green when the goal is reached

3.2 Software quality (20 points)

On the due date at the due time (Thursday, 24.10.2013, 13:00), we will collect your code through
your svn repository. Every file that should be considered for grading must be in the repository
at that time. If you have not yet set up your svn repository yet, please set it up now. The
instruction for setting up the repository is in assignment 0.

• Choice of abstraction and relations (6 points)

• Correctness of implementation (8 points)

• Extendibility and reusability (4 points)

• Comments and documentation, including ”README” (2 points)

References

[1] Astrom, K., and Murray, R. 2008. Chapter 10: PID Control. Feedback Systems: An Intro-
duction for Scientists and Engineers. Princeton University Press.

[2] Kamon, I., Rimon, E., and Rivlin, E. 1998. TangentBug: A Range-Sensor-Based Navigation
Algorithm. The International Journal of Robotics Research. 17(9):934-953.

[3] Lumelsky, V. J., and Stepanov, A. A. 1897. Path-planning strategies for a point mobile
automaton moving amidst obstacles of arbitrary shape. Algorithmica. 2:403-430.

6

	Robot control
	Background
	Task
	Hints

	Obstacle avoidance
	Background
	Task
	Hints

	Grading
	In-class demonstration (20 points)
	Software quality (20 points)

