
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

Assignment 3: Path planning and object recognition

ETH Zurich

Due: Monday, 02.12.2013 at 16:00

You are outside the building, safe, but something is not right. You check your pockets and
you look around. Something is missing, but you cannot remember what it is. ”What could I
have lost?” You trail back your thoughts. You cannot remember, but you want to make sure
that you don’t leave anything important behind. Unfortunately, it’s too dangerous for you to go
back into the building yourself. Instead, you want your robot to search the building and report
what it sees. Can you make sure that your robot does the job properly and come back out of
the building before the building collapses?

1 Path planning

1.1 Background

Path planning is the method for producing a continuous motion that connects a start config-
uration and a goal configuration while avoiding collision with known obstacles. Obstacles are
often described in a 2D or 3D map while the path is described in robot’s configuration space.
In mobile robot path planning with a differential drive robot, we often assume that the robot is
holonomic and has a point mass. This simplifies the configuration space to be identical to 2D
projection of physical space if the obstacles in the space is inflated by the radius of the robot to
compensate for the change in the robot representation.

One way to search for a path is by applying a graph search alogrithm. To do so, the
configuration space must be converted into a graph, and a popular method is decomposing the
space into grid cells. Each cell is then a node in the graph, and two neighboring cells form an edge
in the graph. The connectivity between two neighbouring cells can be either four-connected, in
which a node forms an edge with the node’s top, down, left, and right neighboring nodes, and
eight connected, in which the node forms additional four edges to its diagonal neighbors.

A* search algorithm [1] is a best-first search algorithm which explores the path with the
lowest expected total cost first. The expected total cost f(n) of a node n is computed by

f(n) = g(n) + ε ∗ h(n), (1)

where g(n) is the path cost to n from the starting node, h(n) is the heuristic cost to the goal
from n, and ε determines the weight between g(n) and h(n). In turn, g(n) is

g(n) = g(n′) + c(n, n′), (2)

that is the path cost g(n′) of n’s neighboring node n′, and the traversal cost c(n, n′) of getting
from n′ to n. The traversal cost c(n, n′) can be computed by the Euclidean distance between
two nodes n and n′ or approximated by the Manhattan distance. Heuristic cost h(n) is often
computed as the Euclidean distance between n and the goal node, and the optimal path is found
when ε = 1.

Using the expected cost f(n), A* algorithm, show in Algorithm 1, works as follows: Given
a starting node nstart and a goal node ngoal, the algorithm initializes the search by setting

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

g(nstart) = 0 and adding the neighboring nodes of nstart to a heap Sopen. Sopen contains all
the neighboring nodes of the visited nodes Sclosed. Among the nodes in Sopen, the algorithm
searches for the next node nnext with the smallest expected cost fcost(nnext) to the goal and
repeatedly adds the neighboring nodes of nnext to Sopen. When the next node nnext is the goal
node ngoal or all the reachable nodes Sopen in the space have been searched, then the algorithm
terminates its search. If the algorithm reaches the goal node ngoal, we can build the optimal
path Poptimal by trailing back the previous nodes until we reach the goal.

Algorithm 1: A* search algorithm [1]

Data: nstart: the starting node of the robot
ngoal: the goal node
G = (V,E): the graph of nodes V and edges E

Result: Poptimal: the optimal path from nstart and ngoal

begin
Sclosed = ∅
Sopen = {nstart}
gcost(nstart) = 0
fcost(nstart) = gcost(nstart) + hcost(nstart, ngoal)

npreviousstart = ∅
Poptimal = ∅
while Sopen 6= ∅ or ngoal /∈ Sclosed do
{nnext | nnext ∈ Sopen, fcost(nnext) ≤ fcost(n) ∀n ∈ Sopen}
Sopen = Sopen − {nnext}
Sclosed = Sclosed + {nnext}
if nnext = ngoal then

ncurrent = ngoal
while ncurrent 6= ∅ do

Poptimal = {ncurrent}+ Poptimal

ncurrent = npreviouscurrent

else
forall {nneighbor ∈ V | ∃(nnext, nneighbor) ∈ E} do

if nneighbor /∈ Sopen then
gcost(nneighbor) = gcost(nneighbor) + d(nneighbor, nnext)
fcost(nneighbor) = gcost(nneighbor) + hcost(nneighbor, ngoal)

npreviousneighbor = nnext
Sopen = Sopen + {nnext}

else
gcost,temp(nneighbor) = gcost(nnext) + d(nneighbor, nnext)
fcost(nneighbor) = gcost(nneighbor) + hcost(nneighbor, ngoal)
if fcost,temp(nneighbor) < fcost(nneighbor) then

gcost(nneighbor) = gcost,temp(nneighbor)
fcost(nneighbor) = gcost(nstart) + hcost(nstart, ngoal)

npreviousneighbor = nnext

end

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. J. Shin

Robotics Programming Laboratory – Assignments
Fall 2013

1.2 Task

Write an A* path planner algorithm. You can either extend your localization package or create
a new package.

Note: You do not have to be able to localize to plan a path. You will be given a starting
position and goal positions. Start the assignment by writing a path planner that can find a path
between two points on an occupancy grid map. Make sure that you can plan a path between
two points before extending it to find the shortest path visiting n points or controlling the robot
to follow the path.

2 Grading

You will be given a map as a png file and three destinations within the map. The task is for
the robot to plan the optimal path to visit these goal locations then come back to the starting
location.

2.1 In-class demonstration (30 points)

• Compute and visualize the optimal path in RViz (10 points)

– Able to find and display the optimal path between two nodes (6 points)

– Able to find and display the shortest path visiting all nodes (4 points)

• Follow the optimal path (5 points per path)

– Maximum deviation from the ideal path (2.5 points)

∗ 2.5 points for the team with the smallest deviation

∗ for every additional 0.5cm, -0.25 points

– Number of peaks (2.5 points)

∗ 2.5 points for the team with the fewest peaks (A peak has more than 1cm devi-
ation from the ideal path)

∗ for every additional peak: -0.25 points

2.2 Software quality (30 points)

• Choice of abstraction and relations (9 points)

• Correctness of implementation (12 points)

• Extendibility and reusability (6 points)

• Comments and documentation, including ”README” (3 points)

References

[1] Hart, P. E., Nilsson, N. J., Raphael, B. 1968. ”A Formal Basis for the Heuristic Determination
of Minimum Cost Paths”. IEEE Transactions on Systems Science and Cybernetics SSC4 4
(2): 100107.

3


	Path planning
	Background
	Task

	Grading
	In-class demonstration (30 points)
	Software quality (30 points)


