
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 3:

Introduction to concurrency & SCOOP



2

The SCOOP programming model

Basic operation of OO programming: xf (…)

Can be a command or a query:

csubmit (p)

caccepted (p)if then rejoice end

c:                CONFERENCEseparate

…

r (                                                          )

end

do
-- Asynchronous

-- Synchronous

require
csubmission_open

-- Exclusive access

r ( icse , latest)

; p: PAPER

-- Exclusive access when needed

-- Waiting



3

Four risks

Data race

 Incorrect concurrent access to shared data

Deadlock

 Computation cannot progress because of circular waiting

Starvation

 Execution favors certain processes over others, which 
never get executed

Priority inversion

 Locks cause a violation of priority rules



4

Data race

 Thank you for calling Ecstatic Opera Company.
How can I help you?

 (Joan) I need a single seat for next Tuesday’s performance 
of Pique Dame.

 Let me check... You’re in luck! Just one left. Eighty dollars.

 Great. I’ll go for it.

 Just a moment while I book it.

 Thanks.

 Sorry, there are no more seats available for Tuesday.



5

Data race: scenario



6

Deadlock

(Jane)

 I’d like to change my Tuesday evening seat
for the matinee performance.

 Both shows are sold out, but I heard there was a 
customer who wanted to change the other way around.
Matinee booking is handled by a different office, so let 
me call them and make the change.

 Thanks.

 (Ten minutes later.) “The number is still busy.”



7

Deadlock: scenario



8

Starvation

Jane keeps calling, but agents always pick up someone 
else’s call



9

Execution sequences

• Execution can give rise to this execution sequence:

x := 0

P1 P2

1
2

x := 0
x := x + 1

1 x := 2

P1 1 x := 0 x = 0

P2 1 x := 2 x = 2

P1 2 x := x + 1 x = 3

Variable values after 
execution of the 
code on the line

Instruction executed 
with Thread ID and 
line number



10

Execution sequences

Possible execution sequences considering all interleavings:

x := 0

P1 P2

1
2

x := 0
x := x + 1

1 x := 2

P2 1 x := 2 x = 2

P1 1 x := 0 x = 0

P1 2 x := x + 1 x = 1

P1 1 x := 0 x = 0

P1 2 x := x + 1 x = 1

P2 1 x := 2 x = 2

P1 1 x := 0 x = 0

P2 1 x := 2 x = 2

P1 2 x := x + 1 x = 3



11

Data races (race conditions)

If processes (OS processes, threads) are completely 
independent, concurrency is easy

Usually, however, threads interfere with each other by 
accessing and modifying common resources, such as 
variables and objects

 Unwanted dependency of the computation’s result on 
nondeterministic interleaving is a race condition or data 
race

 Such errors can stay hidden for a long time and are 
difficult to find by testing



12

Dining philosophers



13

The dining philosophers problem

n philosophers are seated around a table; between each 
pair there is a single fork

Each philosopher only thinks and eats  

To eat, a philosopher needs both left and right forks (so 
two adjacent philosophers cannot eat at the same time)

The problem: devise an algorithm enabling philosophers to 
follow this scheme, without deadlock



14

Dining philosophers: solution attempt 1

Each philosopher first picks up the right fork, then the 
left fork, and then starts eating; after having eaten, the 
philosopher puts down the left fork, then the right one

 The philosophers can deadlock!



15

Dining philosophers: solution attempt 2

Each philosopher successively:

 Picks up right fork and the left fork at the same time

 Starts eating

 After having eaten, puts them both back down

A philosopher could starve!



16

Fairness

To prove freedom from starvation or other liveness 
properties, fairness assumptions are sometimes needed

Fairness is concerned with a fair resolution of 
nondeterminism 

 Weak fairness: if an action is continuously enabled, i.e. 
never temporarily disabled, then it has to be executed 
infinitely often

 Strong fairness: if an action is infinitely often enabled,
but not necessarily always, then it has to be executed 
infinitely often



17

SCOOP background

Simple Concurrent Object-Oriented Programming

First version described in CACM article (1993) and 
chapter 32 of Object-Oriented Software Construction, 
2nd edition, 1997

Prototype implementation at ETH (2005-2010)

Recent production implementation at Eiffel Software, part 
of EiffelStudio

Recent descriptions: Piotr Nienaltowski’s 2007 ETH PhD; 
Morandi, Nanz, Meyer (2011)



18

Example 1: bank transfer, from sequential to concurrent

transfer (source, target:                      ACCOUNT;

amount: INTEGER)

-- Transfer amount, if available, from source to target.

do

if sourcebalance >= amount then

sourcewithdraw  (amount)

targetdeposit     (amount)

end

end

separate

transfer (Jane, Jill, 100)

transfer (Jane, Joan, 100)

Jane Jill Joan

100 00
0 0100

-100 1000



19

Bank transfer (better version)

transfer (source, target:                      ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount 

do

sourcewithdraw  (amount)

targetdeposit     (amount)

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

separate



20

Example 2: hexapod robot

Hind legs have force sensors on feet and retraction limit switches



21

Hexapod locomotion

Alternating protraction and retraction of tripod pairs

 Begin protraction only if partner legs are down

 Depress legs only if partner legs have retracted

 Begin retraction when partner legs are up

Ganesh Ramanathan, Benjamin Morandi, IROS 2011



22

Hexapod coordination rules

R1: Protraction can start only if partner group on ground

R2.1: Protraction starts on completion of retraction

R2.2: Retraction starts on completion of protraction

R3: Retraction can start only when partner group raised

R4: Protraction can end only when partner group retracted

Dürr, Schmitz, Cruse: Behavior-
based modeling of hexapod 
locomotion: linking biology & 
technical application, in Arthropod 
Structure & Development, 2004



23

Sequential implementation



24

Multi-threaded implementation



25

SCOOP implementation



26

Hexapod coordination rules

R1: Protraction can start only if partner group on ground

R2.1: Protraction starts on completion of retraction

R2.2: Retraction starts on completion of protraction

R3: Retraction can start only when partner group raised

R4: Protraction can end only when partner group retracted

Dürr, Schmitz, Cruse: Behavior-
based modeling of hexapod 
locomotion: linking biology & 
technical application, in Arthropod 
Structure & Development, 2004



27

Example 3: dining philosophers



28

Dining philosophers in SCOOP (1)

class PHILOSOPHER feature
live 

do

from getup until over loop

think ; eat (left, right)

end
end

eat ( l, r : separate FORK  ) 

-- Eat, having grabbed l and r.

do … end

getup do … end
over : BOOLEAN

end



29

Example 4: elevator system

For maximal concurrency, all objects are separate

Inheritance

Client
From: Object-Oriented 
Software Construction





30

The design of SCOOP (and this presentation)

To achieve the preceding goals, SCOOP makes a number of 
restrictions on the concurrent programming model

This presentation explains and justifies these restrictions 
one after the other

The goal is not to limit programmers but to enable them to 
reason about the programmers



31

The design of SCOOP 

SCOOP intends to make concurrent programming as 
predictable as sequential programming

A key criterion is “reasonability” (not a real word!): the 
programmer’s ability to reason about the execution of 
programs based only on their text

 As in sequential O-O programming, with contracts etc.

SCOOP is not a complete rework of basic programming 
schemes, but an incremental addition to the basic O-O 
scheme: one new keyword

 “Concurrency Made Easy”



32

Handling concurrency simply

SCOOP narrows down the distinction between sequential & 
concurrent programming to six properties, studied next:

 (A) Single vs multiple “processors”

 (B) Regions

 (C) Synchronous vs asynchronous calls

 (D) Semantics of argument passing

 (E) Semantics of resynchronization (lazy wait)

 (F) Semantics of preconditions



33

The starting point (A): processors

To perform a computation is

 To apply certain actions

 To certain objects

 Using certain processors

Processor

Actions Objects

Sequential: one processor

Concurrent: any number of processors



34

What makes an application concurrent?

Processor:
Thread of control supporting sequential execution of 
instructions on one or more objects

Can be implemented as:

 Computer CPU

 Process

 Thread

 AppDomain (.NET) …

The SCOOP model is abstract and does not specify the 
mapping to such actual computational resources

Processor

Actions Objects



35

Object-oriented programming

The key operation is “feature call”

x f (args)

where x, the target of the call, denotes an object to which 
the call will apply the feature f

Which processor is in charge of executing such a call? 



36

(B): Regions

All calls targeting a given object will be executed by a 
single processor

 The set of objects handled by a given processor is 
called a region

 The processor in charge of an object is its handler



37

A consequence: regions

All calls targeting a given object will be executed by a 
single processor

 The set of objects handled by a given processor is 
called a region

A B

C
D

x

Objects

Region/
processor

Client

A

Region 
boundary

x r (…)

OA
OB



38

SCOOP restriction: one handler per object

 One processor per object: “handler”

 At most one feature (operation) active on an object at 
any time



39

Regions

The notion of handler implies a partitioning of the set of 
objects:

 The set of objects handled by a given processor is 
called a region

 Handler rule implies one-to-one correspondence 
between processors and regions



40

(C) The sequential view: O-O feature calls

x.r (a)

Processor

Client Supplier

previous

x.r (a)

next

r (x : A)
do

…
end



41

(C) The concurrent form of call: asynchronous

Client Supplier

previous

x.r (a)

next

r (x : A)
do

…
end

Client’s handler Supplier’s handler



42

The two forms of O-O call

To wait or not to wait:

 If same processor, synchronous

 If different processor, asynchronous

Difference must be captured by syntax:

 x: T

 x: separate T -- Potentially different processor

Fundamental semantic rule: a call x.r (a)

 Waits (i.e. is synchronous) for non-separate x

 Does not wait (is asynchronous) for separate x



43

Why potentially separate?

separate declaration only states that the object might be 
handled by a different processor

 In class A: x: separate B

 In class B: y: separate A

 In A, what is the type of x y?

In some execution, the value might be a reference to an 
object in the current region



44

Call vs application

With asynchrony we must distinguish between feature call 
and feature application

The execution

x  r (...)

is the call, and (with x separate) will not wait (the client 
just logs the call)

The execution of r happens later and is called the feature 
application



45

Consistency rules: avoiding traitors

nonsep : T

sep : separate T

nonsep := sep

nonsep.p (a)

Traitor!

More traitor 
protection through 
the type system!



46

(D) Access control policy

Since separate calls are asynchronous there is a 
real danger of confusion

Consider for example

remote_stack : separate STACK [T ]

…

remote_stack.put (a)

… Instructions not affecting the stack…
y := my_stack.item



47

(D) Access control policy

SCOOP requires the target of a separate call to 
be a formal argument of enclosing routine:

put (s : separate STACK [T ]; value : T)

-- Store value into s.

do

s.put (value)

end

To use separate object:
my_stack : separate STACK [INTEGER ]

create my_stack

put (my_stack,   10) 



48

(D) Separate argument rule

The target of a separate call

must be an argument of the enclosing routine

Separate call: x f (...) where x is separate



49

(D) Wait rule

A routine call guarantees 
exclusive access to the 

handlers (the processors) of all 
separate arguments

a_routine (nonsep_a, nonsep_b,  sep_c, sep_d, sep_e )

Exclusive access to sep_c, sep_d, sep_e within a_routine



50

An example: from sequential to concurrent

transfer (source, target:                      ACCOUNT;

amount: INTEGER)

-- Transfer amount, if available, from source to target.

do

if sourcebalance >= amount then

sourcewithdraw  (amount)

targetdeposit     (amount)

end

end

separate



51

Dining philosophers in SCOOP (1)

class PHILOSOPHER feature
live 

do

from getup until over loop

think ; eat (left, right)

end
end

eat ( l, r : separate FORK  ) 

-- Eat, having grabbed l and r.

do … end

getup do … end
over : BOOLEAN

end



52

(D) What the wait rule means

Beat enemy number one in concurrent world: atomicity 
violations

 Data races

 Illegal interleaving of calls

Data races cannot occur in SCOOP



53

(D) Wait rule

A routine call guarantees 
exclusive access to the 

handlers (the processors) of all 
separate arguments

a_routine (nonsep_a, nonsep_b,  sep_c, sep_d, sep_e )

Exclusive access to sep_c, sep_d, sep_e within a_routine



54

Semantics vs implementation

Older SCOOP literature says that feature application “waits” 
until all the separate arguments’ handlers are available

This is not necessary!

What matters is exclusive access: implementation does not 
have to wait unless semantically necessary

The implementation performs some of these optimizations

f (a, b, c : separate T)

do

something_else

a.r

b.s

end

No need to wait for 
a and b until here

No need to wait for c!



55

(E) Resynchronization: lazy wait

How do we resynchronize after asynchronous (separate) call?

No explicit mechanism!

The client will wait when, and only when, it needs to:

x.f
x.g (a)

y.f
…

value := x.some_query

Lazy wait (also known as wait by necessity)

Wait here!



56

(E) Synchrony vs asynchrony revisited

For a separate target x:

 x command (...) is asynchronous

 v := x query (...) is synchronous



57

Exercise

If we do want to resynchronize explicitly, what do we do?



58

(F) Contracts

What becomes of contracts, in particular preconditions, in 
a concurrent context?



59

put (b :      [G ] ; v : G )

-- Store v into b.
require

not b.is_full
do

…
ensure

not b.is_empty
end

BUFFER

my_queue : [T ]

… 

if not my_queue.is_full then

put (my_queue, t )

end

BUFFER

put

item, remove



60

(F) Contracts

put (b : separate QUEUE [INTEGER ] ; v : INTEGER)
-- Store v into b.

require

not b.is_full
v > 0

do

b.put (v)
ensure

not b.is_empty
end

...
put (my_buffer, 10 )



61

(F) Contracts

put (b : BUFFER [INTEGER ] ; i : INTEGER)
-- Store i into buffer.

require

not b.is_full
i > 0

do

b.put (i )
ensure

not b.is_empty
end

...
put (my_buffer, 10 )

Precondition becomes 
wait condition



62

Bank transfer (version with contracts)

transfer (source, target:                      ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount 

do

sourcewithdraw  (amount)

targetdeposit     (amount)

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

separate



63

(F) Full synchronization rule

A call with separate arguments waits until:

The corresponding objects are all available

 Preconditions hold

“Separate call”:

x.f (a) -- where a is separate



64

Which semantics applies?

put (buf : separate BUFFER [INTEGER]; i : INTEGER)  

require

not buf.is_full

i > 0

do

buf.put (i)
end

Wait condition

Correctness 
condition

my_buffer : separate BUFFER [INTEGER]

put (my_buffer, 10)



65

Generalized semantics of preconditions

The different semantics is surprising at first:
 Separate: wait condition
 Non-separate: correctness condition

At a high abstraction level, however, we may consider that
 Wait semantics always applies in principle

 Sequentiality is a special case of concurrency

 Wait semantics boils down to correctness semantics for 
non-separate preconditions. 

 Smart compiler can detect some cases
 Other cases detected at run time


