
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 5: Design Patterns

What is a pattern?

 First developed by Christopher Alexander for
constructing and designing buildings and urban areas

 ―Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.‖

What is a pattern?

 First developed by Christopher Alexander for
constructing and designing buildings and urban areas

 ―Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.‖

 Example Web of Shopping (C. Alexander, A pattern language)

Conflict: Shops rarely place themselves where they best serve
people's needs and guarantee their own stability.

Resolution: Locate a shop by the following steps:
1) Identify and locate all shops offering the same service.
2) Identify and map the location of potential consumers.
3) Find the biggest gap in the web of similar shops with potential
consumers.
4) Within the gap locate your shop next to the largest cluster of other
kinds of shops.

What is a pattern?

 First developed by Christopher Alexander for
constructing and designing buildings and urban areas

 ―Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.‖

 Patterns can be applied to many areas, including
software development

Patterns in software development

Design pattern:

 A document that describes a general solution to a
design problem that recurs in many applications.

Developers adapt the pattern to their specific application.

Why design patterns?

―Designing object-oriented software is hard and designing
reusable object-oriented software is even harder.‖ Erich
Gamma

 Experienced object-oriented designers make good
designs while novices struggle

 Object-oriented systems have recurring patterns of
classes and objects

 Patterns solve specific design problems and make OO
designs more flexible, elegant, and ultimately reusable

6

Benefits of design patterns

 Capture the knowledge of experienced developers

 Publicly available repository

 Common pattern language

 Newcomers can learn & apply patterns

 Yield better software structure

 Facilitate discussions: programmers, managers

History of software design patterns

1987: Ward Cunningham and Kent Beck develop a pattern
language with five Smalltalk patterns

1991: Erich Gamma and Richard Helm start jotting down
catalog of patterns; first presentation at TOOLS

1991: First Patterns Workshop at OOPSLA

1993: Kent Beck and Grady Booch sponsor the first
meeting of the Hillside Group

1994: First Pattern Languages of Programs (PLoP)
conference

1994: The Gang of Four (GoF: Erich Gamma and Richard
Helm, Ralph Johnson, and John Vlissides) publish the
Design Patterns book

8

Design patterns

 A design pattern is an architectural scheme — a certain
organization of classes and features — that provides
applications with a standardized solution to a common
problem.

 Since 1994, various books have catalogued important
patterns. Best known is Design Patterns by Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides, Addison-
Wesley 1994.

Levels of abstraction for design patterns

 Complex design for an
entire application or
subsystem

 Solution to a general
design problem in a
particular context

 Simple reusable design
class such as a linked list,
hash table, etc.

10
Based on a slide by Bob Tarr, Design Patterns in Java

Abstract

Concrete

Gang of Four Design Patterns

 Middle level of abstraction

 ―A design pattern names, abstracts, and identifies the
key aspects of a common design structure that make it
useful for creating a reusable object-oriented design.‖
Gamma et. al.

11

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
• Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
• Model-View-Controller

A pattern is not a reusable solution

Solution to a particular recurring design issue in a
particular context:

 ―Each pattern describes a problem that occurs over
and over again in our environment, and then describes
the core of the solution to this problem in such a way
that you can use this solution a million times over,
without ever doing it the same way twice.‖

Gamma et al.

 NOT REUSABLE

A step backwards?

Patterns are not reusable solutions:

 You must implement every pattern every time

 Pedagogical tools, not components

We have done work at ETH to correct this situation:

 ―A successful pattern cannot just be a book description:
it must be a software component‖

Result: Pattern Library and Pattern Wizard
(see following lectures)

Pattern componentization

Classification of design patterns:
 Fully componentizable

 Partially componentizable

 Wizard- or library-supported

 Non-componentizable

Karine Arnout
ETH PhD, 2004

Fully componentizable (48%)

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Already covered
in Info1

Behavioral
• Chain of Responsibility
• Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
• Model-View-Controller

Observer pattern and event-driven progr.

Intent: ―Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.‖

[Gamma et al., p 331]

 Implements publish-subscribe mechanism

 Used in Model-View-Controller patterns, interface
toolkits, event

 Reduces tight coupling of classes

17

Handling input with modern GUIs

User drives program:

―When a user presses
this button, execute
that action from my
program‖

CLICK START STATION ABOVE

Event-driven programming: an example

Specify that when a
user clicks this button
the system must
execute

 find_station (x, y)

where x and y are the
mouse coordinates and
find_station is a
specific procedure of
your system.

CLICK START STATION ABOVE

Event-driven programming: a metaphor

Routine

Routine

Routine

Routine

Routine

Routine

Routine

Publishers Subscribers

Alternative terminologies

 Observed / Observer

 Subject / Observer

 Publish / Subscribe

 Event-driven
design/programming

 In this presentation:
 Publisher and Subscriber

A solution: the Observer Pattern (GoF)

*
PUBLISHER

+
PUB_1

*
SUBSCRIBER

+
SUB_1

update *

update +

Deferred (abstract)

Effective (implemented)

*
+

Inherits from

Client (uses)

subscribe +

unsubscribe
+

subscribed: LIST […]
attach
detach

+
SUB_2

…

+
PUB_2

…

publish +

Observer pattern

Publisher keeps a (secret) list of observers:
 subscribed : LINKED_LIST [SUBSCRIBER]

To register itself, an observer executes
 subscribe (some_publisher)

where subscribe is defined in SUBSCRIBER :

 subscribe (p: PUBLISHER)
 -- Make current object observe p.
 require
 publisher_exists: p /= Void
 do
 p.attach (Current)
 end

s1 s2 s3 s4

Attaching an observer

In class PUBLISHER :
 feature {SUBSCRIBER}
 attach (s : SUBSCRIBER)
 -- Register s as subscriber to this
publisher.
 require
 subscriber_exists : s /= Void
 do

 subscribed.extend (s)

 end
Note that the invariant of PUBLISHER includes the clause
 subscribed /= Void
(List subscribed is created by creation procedures of
PUBLISHER)

Why?

Triggering an event

publish
 -- Ask all observers to
 -- react to current event.
 do
 across
 subscribed
 as
 s
 loop
 s.item.
 end
 end

Each descendant of SUBSCRIBER defines its own version of update

update

Dynamic binding

sub

Cursor

item

forth

after

s1 s2 s3 s4

subscribed

*
PUBLISHER

+
PUB_1

*
SUBSCRIBER

+
SUB_1

update *
subscribe+
unsubscribe+

update +

subscribed: LIST […]
attach
detach

…

publish+

Observer - Participants

Publisher
 knows its subscribers. Any number of Subscriber objects may

observe a publisher.

 provides an interface for attaching and detaching subscribers.

Subscriber
defines an updating interface for objects that should be
notified of changes in a publisher.

Concrete Publisher
 stores state of interest to ConcreteSubscriber objects.

 sends a notification to its subscribers when its state changes.

Concrete Subscriber
 maintains a reference to a ConcretePublisher object.

 stores state that should stay consistent with the publisher's.

 implements the Subscriber updating interface to keep its state
consistent with the publisher's.

26

Observer pattern (in basic form)

 Subscriber may subscribe:

 At most one operation

 To at most one publisher

 Event arguments are tricky to handle

 Subscriber knows publisher
 (More indirection is desirable)

 Not reusable — must be coded anew for each application

Using agents in EiffelVision

Paris_map.click.subscribe (agent find_station)

CLICK START STATION ABOVE

Mechanisms in other languages

 C and C++: ―function pointers‖

 C#: delegates (more limited form of agents)

Using agents (Event Library)

Event: each event type will be an object
Example: left click

Context: an object, usually
 representing a user interface element
Example: the map

Action: an agent representing a routine

 Example: find_station

The Event library

Basically:

 One generic class: EVENT_TYPE

 Two features: publish and subscribe

For example: A map widget Paris_map that reacts in a way
defined in find_station when clicked (event left_click):

Event library: a simple implementation

class

 EVENT_TYPE [ARGS -> TUPLE]

inherit ANY
 redefine default_create end

feature {NONE } -- Implementation

 subscribers : LINKED_LIST [PROCEDURE [ANY, ARGS]]

feature {NONE } -- Initialization
 default_create
 -- Initialize list.
 do
 create subscribers make
 subscribers compare_equal
 end

32

Simplified event library (end)

feature -- Basic operations
 subscribe (action: PROCEDURE [ANY, ARGS])
 -- Add action to subscription list.
 require
 exists: action /= Void
 do
 subscribers extend (action)
 ensure
 subscribed : subscribers has (action)
 end

 publish (arguments: ARGS)
 -- Call subscribers.
 require
 exist : arguments /= Void
 do
 across subscribers as s loop s item call (arguments) end
 end
end

33

Event Library style

The basic class is EVENT_TYPE

On the publisher side, e.g. GUI library:

 (Once) declare event type:

 click : EVENT_TYPE [TUPLE [INTEGER, INTEGER]]

 (Once) create event type object:

 create click

 To trigger one occurrence of the event:

 click.publish ([x_coordinate, y_coordinate])

On the subscriber side, e.g. an application:

 click.subscribe (agent find_station)

Example using the Event library

The subscribers (―observers‖) subscribe to events:

 Paris_map.click.subscribe (agent find_station)

The publisher (―subject‖) triggers the event:

 click.publish ([x_positition, y_position])

Someone (generally the publisher) defines the event type :

 click : EVENT_TYPE [TUPLE [INTEGER, INTEGER]]
 -- Mouse click events
 once
 create Result
 ensure
 exists: Result /= Void
 end

Subscriber variants

click.subscribe (agent find_station)

Paris_map.click.subscribe (agent find_station)

click.subscribe (agent your_procedure (a, ?, ?, b))

click.subscribe (agent other_object.other_procedure)

Observer pattern vs. Event Library

In case of an existing class MY_CLASS :

 With the Observer pattern:
 Need to write a descendant of SUBSCRIBER and

MY_CLASS

 Useless multiplication of classes

 With the Event Library:
 Can reuse the existing routines directly as agents

VIEW

Observer and event-driven design

A = 50%
B = 30%
C = 20%

O
b
se

rv
e
rs

S
ub

je
ct

Some issues

1. Keeping the ―business model‖ and the GUI separate

 Business model (or just model): core functionality
of the application

 GUI: interaction with users

2. Minimizing ―glue code‖ between the two

3. Making sure we keep track of what‘s going on

Model-View Controller

(Trygve Reenskaug, 1979)

Observer - Consequences

Observer pattern makes the coupling between publishers
and subscribers abstract.

Supports broadcast communication since publisher
automatically notifies to all subscribers.

Changes to the publisher that trigger a publication may lead
to unexpected updates in subscribers.

41

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
• Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Already covered
in Info1

Command pattern

Intent:

 ―Way to implement an undo-redo mechanism, e.g. in
text editors.‖ [OOSC, p 285-290]

 ―Way to encapsulate a request as an object, thereby
letting you parameterize clients with different
requests, queue or log requests, and support undoable
operations.‖ [Gamma et al., p 233]

Application example

 EiffelStudio

43

The problem

Enabling users of an interactive system to cancel the
effect of the last command

Often implemented as ―Control-Z‖

Should support multi-level undo-redo (―Control-Y‖), with
no limitation other than a possible maximum set by the
user

Example: a text editor

 Notion of ―current line‖.
 Assume commands such as:

 Remove current line
 Replace current line by specified text
 Insert line before current position
 Swap current line with next if any
 ―Global search and replace‖ (hereafter GSR): replace

every occurrence of a specified string by another
 ...

 This is a line-oriented view for simplicity, but the
discussion applies to more sophisticated views

Key step in devising a software architecture

Here:

 The notion of ―command‖

Finding the right abstractions

(the interesting object types)

Keeping the history of the session

The history list:

history : TWO_WAY_LIST [COMMAND]

Oldest Most recent

Removal Swap Insertion Insertion

What’s a “command” object?

 A command object includes information about one
execution of a command by the user, sufficient to:

 Execute the command

 Cancel the command if requested later

For example, in a Removal command object, we need:

• The position of the line being removed

• The content of that line

General notion of command

deferred class COMMAND feature

execute
 -- Carry out one execution of this command.

undo
 -- Cancel an earlier execution of this command.

end

deferred

: done
end

deferred
end

done: BOOLEAN
 -- Has this command been executed?

ensure
 already: done

require
 already: done

A command class (sketch, no contracts)

class REMOVAL inherit COMMAND feature
 controller : EDIT_CONTROLLER
 -- Access to business model

 line : STRING
 -- Line being removed

 index : INTEGER
 -- Position of line being removed

 execute
 -- Remove current line and remember it.
 do line := controller.item ; index := controller.index
 controller.remove ; done := True
 end

 undo
 -- Re-insert previously removed line.
 do controller.go_i_th (index)
 controller.put_left (line)
 end
end

Command class hierarchy

execute*

undo*

…

execute+

undo+

line: STRING
index: INTEGER

...

execute+

undo+
index

...

+

* deferred

effective

*
COMMAND

+
REMOVAL

+
INSERTION

Executing a user command

decode_user_request

if ―Request is normal command‖ then
 ―Create command object c corresponding to user request‖

 history.extend (c)

 c.execute

elseif ―Request is UNDO‖ then

 if not history.before then -- Ignore excessive requests

 history.item.undo
 history.back
 end
elseif ―Request is REDO‖ then

 if not history.is_last then -- Ignore excessive requests

 history.forth
 history. item.execute
 end
end

item

Pseudocode, see
implementation next

Removal Swap Insertion Insertion

53

Command pattern: original architecture (GoF)

APPLICATION HISTORY
history

COMMAND*
commands

execute*

undo*

redo*

execute

can_undo, can_redo

undo, redo

undo_all, redo_all

extend

COMMAND_1+

execute+

undo+

redo+

COMMAND_2+

execute+

undo+

redo+

The undo-redo (or “command”) pattern

 Has been extensively used (e.g. in EiffelStudio and
other Eiffel tools)

 Fairly easy to implement

 Details must be handled carefully (e.g. some commands
may not be undoable)

 Elegant use of O-O techniques

 Disadvantage: explosion of small classes

Using agents

For each user command, have two routines:

 The routine to do it

 The routine to undo it

The history list in the undo-redo pattern

history : TWO_WAY_LIST [COMMAND]

Oldest Most recent

Removal Swap Insertion Insertion

The history list using agents

The history list simply becomes a list of agents pairs:

history : TWO_WAY_LIST [TUPLE

 [doer : PROCEDURE [ANY, TUPLE],

 undoer : PROCEDURE [ANY, TUPLE]]

Basic scheme remains the same, but no need for
command objects any more; the history list simply
contains agents.

Insertion Removal Insertion Swap

Deinsertion Reinsertion Deinsertion Swap

Named
tuple

Insertion

Deinsertion

Executing a user command (before)

decode_user_request

if ―Request is normal command‖ then
 ―Create command object c corresponding to user request‖

 history.extend (c)

 c.execute

elseif ―Request is UNDO‖ then

 if not history.before then -- Ignore excessive requests

 history.item.undo
 history.back
 end
elseif ―Request is REDO‖ then

 if not history.is_last then -- Ignore excessive requests

 history.forth
 history. item.execute
 end
end

item

Removal Swap Insertion Insertion

Executing a user command (now)

―Decode user_request giving two agents do_it and undo_it ‖
if ―Request is normal command‖ then

 history.extend ([do_it, undo_it])

 do_it.call ([])
elseif ―Request is UNDO‖ then

 if not history.before then

 history.item.undoer .call ([])

 history.back
 end
elseif ―Request is REDO‖ then

 if not history.is_last then

 history.forth

 history.item.doer .call ([])
 end
end

Removal Insertion Swap

Reinsertion Deinsertion Swap

Insertion

Deinsertion

Command - Consequences

Command decouples the object that invokes the operation
from the one that knows how to perform it.

Commands are first-class objects. They can be manipulated
and extended like any other object.

You can assemble commands into a composite command.

It is easy to add new Commands, because you do not have to
change existing classes.

60

Command - Participants

Command
declares an interface for executing an operation.

Concrete command
 defines a binding between a Receiver object and an action.

 implements Execute by invoking the corresponding operation(s) on
Receiver.

Client
creates a ConcreteCommand object and sets its receiver.

Invoker
asks the command to carry out the request.

Receiver
knows how to perform the operations associated with carrying out a

request. Any class may serve as a Receiver.

61

Design patterns – Pattern categories

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Bridge pattern

Intent:

―Decouple[s] an abstraction from its implementation so
that the two can vary.‖

In other words:

It separates the class interface (visible to the clients)
from the implementation (that may change later)

Bridge: an example

 EiffelVision 2 library: multi-platform GUI library

 Supports wide range of interaction ―widgets‖ (or
―controls‖)

 Must run under various environments, including Windows
and Unix/Linux/VMS (X Windows system)

 Must conform to local look-and-feel of every platform

Bridge: Original pattern

*
APPLICATION

+
APP1

+
APP2

*
IMPLEMENTATION

+
APP1
_IMP

+
APP2
_IMP

perform

impl

perform*

perform+ perform+

Bridge: Classes

deferred class
 APPLICATION
feature {NONE} -- Initialization

 make (i : like impl)
 -- Seti as
implementation.

 do impl := i end

feature {NONE} -- Implementation

 impl : IMPLEMENTATION
 -- Implementation

feature -- Basic operations

 perform

 -- Perform desired operation.

 do impl  perform end

end

deferred class IMPLEMENTATION

feature -- Basic operations
 perform
 -- Perform basic operation.
 deferred end
end

*
APPLICATION

+
APP1

+
APP2

*
IMPLEMENTATION

+
IMP1

+
IMP2

Bridge: Classes

class APP1 inherit APPLICATION create
 make

…
end

class IMP1 inherit IMPLEMENTATION feature
 perform
 -- Perform desired operation.
 do … end
end

*
APPLICATION

+
APP1

+
APP2

*
IMPLEMENTATION

+
IMP1

+
IMP2

Bridge: Client view

class CLIENT create
 make

feature -- Basic operations
 make
 -- Do something.
 local

 app1 : APP1

 app2 : APP2
 do

 create app1.make (create {IMP1})

 app1.perform

 create app2.make (create {IMP2})

 app2.perform
 end
end

*
APPLICATION

+
APP1

+
APP2

*
IMPLEMENTATION

+
IMP1

+
IMP2

Bridge: A variation used in EiffelVision 2

BUTTON

TOGGLE

_BUTTON

*
BUTTON_I

*
TOGGLE_

BUTTON_I

implementation

interface

interface

+
BUTTON

_IMP

+
TOGGLE_

BUTTON_IMP

interface

interface

implementation++

Bridge: EiffelVision 2 example

class
 BUTTON

feature {ANY, ANY_I } -- Implementation

 implementation : BUTTON_I -- Implementation

feature {NONE } -- Implementation

 create_implementation
 -- Create corresponding button implementation.
 do
 create {BUTTON_IMP } implementation.make (Current)
 end

…
end

Bridge: Advantages (or when to use it)

 No permanent binding between abstraction and
implementation

 Abstraction and implementation extendible by
subclassing

 Implementation changes have no impact on clients

 Implementation of an abstraction completely hidden
from clients

 Implementation share with several objects, hidden from
clients

Bridge: Componentization

 Non-componentizable (no library support)

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Composite pattern

Intent:

―Way to compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects uniformly.‖

perform*
parts
add
remove
has

i_th

perform+ perform+

Composite: Original pattern

Transparency
version

i_th

perform*

perform+

Safety
version

*
COMPONENT

+
LEAF

+
COMPOSITE

*
COMPONENT

+
LEAF

+
COMPOSITE

 perform+
parts
add
remove
has

Composite pattern, safety version (1/5)

deferred class
 COMPONENT

feature -- Basic operation
 perform
 -- Do something.
 deferred
 end

feature -- Status report
 is_composite: BOOLEAN
 -- Is component a composite?
 do
 Result := False
 end
end

Composite pattern, safety version (2/5)

class
 COMPOSITE
inherit
 COMPONENT
 redefine
 is_composite
 end
create
 make,
 make_from_components

feature {NONE } -- Initialization
 make
 -- Initialize component parts.
 do
 create parts.make
 end

Composite pattern, safety version (3/5)

 make_from_components (part_list: like parts)
 -- Initialize from part_list.
 require
 parts_not_void: part_list /= Void
 no_void_component: not some_components.has (Void)

 do
 parts := part_list
 ensure
 parts_set: parts = part_list
 end

feature -- Status report
 is_composite: BOOLEAN
 -- Is component a composite?
 do
 Result := True
 end

Composite pattern, safety version (4/5)

feature -- Basic operation
 perform
 -- Performed desired operation on all components.
 do
 from parts.start until parts.after loop
 parts.item.perform
 parts.forth
 end
 end
feature -- Access
 item: COMPONENT
 -- Current part of composite
 do
 Result := parts.item
 ensure

 definition: Result = parts.item
 component_not_void: Result /= Void
 end

Composite pattern, safety version (5/5)

feature -- Others
 -- Access: i_th, first, last
 -- Status report: has, is_empty, off, after, before
 -- Measurement: count
 -- Element change: add
 -- Removal: remove
 -- Cursor movement: start, forth, finish, back

feature {NONE } – Implementation
 parts : LINKED_LIST [like item]
 -- Component parts
 -- (which are themselves components)
invariant
 is_composite: is_composite
 parts_not_void: parts /= Void
 no_void_part: not parts.has (Void)
end

Composite: Variation used in EiffelMedia

extend

remove

has

draw+

*
DRAW
ABLE

+
BITMAP

+
DRAWABLE

_CONTAINER

+
SPRITE

+
STRING

*
FIGURE

*
CLOSED
_FIGURE

+
CIRCLE

+
RECT

ANGLE

i_th

draw+ draw+

draw+ draw+ draw+

draw*

Composite: Advantages (or when to use it)

 Represent part-whole hierarchies

 Clients treat compositions and individual objects
uniformly

Figures

A composite figure

Simple figures

COMPOSITE_
FIGURE

Defining the notion of composite figure

center
display
hide
rotate
move
…

count
put
remove
…

FIGURE LIST [FIGURE]

In the overall structure

OPEN_
FIGURE

CLOSED_
FIGURE

SEGMENT POLYLINE POLYGON ELLIPSE

RECTANGLE

SQUARE

CIRCLE

TRIANGLE

perimeter+

perimeter*

perimeter++

diagonal

perimeter++

perimeter++

perimeter+

FIGURE LIST [FIGURE]

COMPOSITE_
FIGURE

A composite figure as a list

Cursor

item

forth

after

Composite figures

class COMPOSITE_FIGURE inherit
 FIGURE

 LIST [FIGURE]
feature
 display
 -- Display each constituent figure in turn.
 do
 from start until after loop

 item.display

 forth
 end
 end
 ... Similarly for move, rotate etc. ...
end

Requires dynamic
binding

Composite: Componentization

 Fully componentizable

 Library support

 Main idea: Use genericity

 But: the library version lacks flexibility and makes the
structure difficult to understand

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Decorator pattern

Intent:

―Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
subclassing for extending functionality.‖

Decorator: Example

component

*
COMPONENT

+
DECORATED_
COMPONENT

+
BORDERED_

AREA

+
TEXT_AREA

+
SCROLL_AREA

COLOR

color

draw*

draw+

draw+

draw+

draw+

Decorator: example

Display an area with a border of a certain color

class
BORDERED_AREA

inherit
DECORATED_COMPONENT

…
feature

color : COLOR
set_color (c : like color) …

draw
 do
 draw_border (color)
 component.draw
 end

end

Decorator: Exporting additional features?

Newly introduced features do not need to be visible to clients,
but they may.
 e.g. Display an area with a border of a certain color

class
BORDERED_AREA

inherit
DECORATED_COMPONENT

…
feature

color: COLOR
set_color (c : like color) …

draw
 do
 draw_border (color)
 component.draw
 end

end

Client can change the
color by calling set_color
if it has direct access to
the BORDERED_AREA

Decorator: Advantages (or when to use it)

 Add responsibilities to individual objects dynamically
and transparently

 Responsibilities can be withdrawn

 Avoid explosion of subclasses to support combinations
of responsibilities

Decorator: Componentization

 Non-componentizable

 Skeleton classes can be generated

Decorator skeleton, attribute (1/2)

note
 description: ―Skeleton of a component decorated with additional attributes‖
class
 DECORATED_COMPONENT -- You may want to change the class name.
inherit
 COMPONENT -- You may need to change the class name
 redefine
 -- List all features of COMPONENT that are not deferred.
 end
create
 make
 -- You may want to add creation procedures to initialize the additional attributes.
feature {NONE } -- Initialization
 make (a_component : like component)
 -- Set component to a_component.
 require
 a_component_not_void: a_component /= Void
 do
 component := a_component
 ensure
 component_set: component = a_component
 end
-- List additional creation procedures taking into account additional attributes.

Decorator skeleton, attribute (2/2)

feature -- Access
 -- List additional attributes.

feature -- To be completed
 -- List all features from COMPONENT and implement them by
 -- delegating calls to component as follows:
 -- do
 -- component.feature_from_component
 -- end

feature {NONE } -- Implementation
 component : COMPONENT
 -- Component that will be used decorated
invariant
 component_not_void: component /= Void
end

Decorator skeleton, behavior (1/2)

note
 description: ―Skeleton of a component decorated with additional behavior‖
class
 DECORATED_COMPONENT -- You may want to change the class name.
inherit
 COMPONENT -- You may need to change the class name
 redefine
 -- List all features of COMPONENT that are not deferred.
 end
create
 make
feature {NONE } -- Initialization
 make (a_component: like component)
 -- Set component to a_component.
 require
 a_component_not_void: a_component /= Void
 do
 component := a_component
 ensure
 component_set: component = a_component
 end

Decorator skeleton, behavior (2/2)

feature -- To be completed
 -- List all features from COMPONENT and implement them by
 -- delegating calls to component as follows:
 -- do
 -- component.feature_from_component
 -- end

 -- For some of these features, you may want to do something more:
 -- do
 -- component.feature_from_component
 -- perform_more
 -- end

feature {NONE } -- Implementation
 component: COMPONENT
 -- Component that will be used for the ―decoration‖
invariant
 component_not_void: component /= Void
end

Decorator skeleton: Limitations

feature -- To be completed
 -- List all features from COMPONENT and implement them by
 -- delegating calls to component as follows:
 -- do
 -- component.feature_from_component
 -- end

Does not work if feature_from_component is:

 an attribute: cannot redefine an attribute into a function
(Discussed at ECMA)

 a frozen feature (rare): cannot be redefined, but typically:
 Feature whose behavior does not need to be redefined (e.g.

standard_equal, … from ANY)
 Feature defined in terms of another feature, which can be

redefined (e.g. clone defined in terms of copy)

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Façade

Intent:

―Provides a unified interface to a set of interfaces in a
subsystem. Façade defines a higher-level interface that
makes the subsystem easier to use.‖ [GoF, p 185]

Façade: Original pattern

CLIENT

FACADE

internal

Façade: Example

CLIENT

ROOM_
FACADE

PROJECTOR

WINDOW_
CONTROLLER

LIGHT_
CONTROLLER

SHUTTER_
CONTROLLER

DOOR_
CONTROLLER

close

setup_projection

setup_talk

setup_break

open

Other example: Compiler, where clients should not need

to know about all internally used classes.

Façade: Advantages (or when to use it)

 Provides a simple interface to a complex subsystem

 Decouples clients from the subsystem and fosters
portability

 Can be used to layer subsystems by using façades to
define entry points for each subsystem level

Façade: Componentization

 Non-componentizable

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Flyweight pattern

Intent:

―Use sharing to support large numbers of fine-grained
objects efficiently.‖

Without the Flyweight pattern (1/2)

class
 CLIENT
...
feature -- Basic operation
 draw_lines
 -- Draw some lines in color.
 local
 line1, line2 : LINE
 red : INTEGER
 do
 ...
 create line1.make (red, 100, 200)

 line1.draw
 create line2.make (red, 100, 400)

 line2.draw
 ...
 end
...
end

Creates one LINE object

for each line to draw

Without the Flyweight pattern (2/2)

class interface
 LINE
create
 make
feature -- Initialization
 make (c, x, y : INTEGER)
 -- Set color to c, x as x_position, and y as y_position.
 ensure
 color_set: color = c
 x_set: x_position = x
 y_set: y_position = y
feature -- Access
 color : INTEGER
 -- Line color
 x_position, y_position : INTEGER
 -- Line position
feature -- Basic operation
 draw
 -- Draw line at position (x_position, y_position) with color.
end

With the Flyweight pattern (1/3)

class
 CLIENT
feature -- Basic operation
 draw_lines
 -- Draw some lines in color.
 local
 line_factory : LINE_FACTORY
 red_line : LINE
 red : INTEGER
 do
 ...
 red_line := line_factory.new_line (red)

 red_line.draw (100, 200)

 red_line.draw (100, 400)
 ...
 end
...
end

Creates only one LINE

object per color

With the Flyweight pattern (2/3)

class interface

 LINE_FACTORY

feature -- Initialization

 new_line (c : INTEGER): LINE

 -- New line with color c

 ensure

 new_line_not_void: Result /= Void

...

end

With the Flyweight pattern (3/3)

class interface
 LINE
create
 make
feature -- Initialization
 make (c: INTEGER)
 -- Set color to c.
 ensure
 color_set: color = c
feature -- Access
 color : INTEGER
 -- Line color
feature -- Basic operation
 draw (x, y: INTEGER)
 -- Draw line at position (x, y) with color.
end

Another example: Document processing

117

 1. Removing extrinsic state. The pattern's applicability is determined
largely by how easy it is to identify extrinsic state and remove it from

shared objects. Removing extrinsic state won't help reduce storage costs if
there are as many different kinds of extrinsic state as there are objects
before sharing. Ideally, extrinsic state can be computed from a separate

object structure, one with far smaller storage requirements.

 In our document editor, for example, we can store a map of
typographic information in a separate structure rather than store the font
and type style with each character object. The map keeps track of runs of
characters with the same typographic attributes. When a character draws
itself, it receives its typographic attributes as a side-effect of the draw
traversal. Because documents normally use just a few different fonts and
styles, storing this information externally to each character object is far

more efficient than storing it internally.

 2. Managing shared objects. Because objects are shared, clients
shouldn't instantiate them directly. FlyweightFactory lets clients locate a
particular flyweight. FlyweightFactory objects often use an associative
store to let clients look up flyweights of interest. For example, the
flyweight factory in the document editor example can keep a table of

flyweights indexed by character codes. The manager returns the proper
flyweight given its code, creating the flyweight if it does not already exist.

 Sharability also implies some form of reference counting or garbage
collection to reclaim a flyweight's storage when it's no longer needed.
However, neither is necessary if the number of flyweights is fixed and
small (e.g., flyweights for the ASCII character set). In that case, the

flyweights are worth keeping around permanently.

next: Known Uses Sample CodeReturning to our document formatter
example, we can define a Glyph base class for flyweight graphical objects.
Logically, glyphs are Composites (see Composite (163)) that have graphical

attributes and can draw themselves. Here we focus on just the font
attribute, but the same approach can be used for any other graphical

attributes a glyph might have.

The concept of flyweight objects was first described and explored as a
design technique in InterViews 3.0 [CL90]. Its developers built a powerful
document editor called Doc as a proof of concept [CL92]. Doc uses glyph

objects to represent each character in the document. The editor builds one
Glyph instance for each character in a particular style (which defines its
graphical attributes); hence a character's intrinsic state consists of the

character code and its style information (an index into a style table).4 That
means only position is extrinsic, making Doc fast. Documents are

represented by a class Document, which also acts as the FlyweightFactory.
Measurements on Doc have shown that sharing flyweight characters is quite

effective. In a typical case, a document containing 180,000 characters
required allocation of only 480 character objects.

ET++ [WGM88] uses flyweights to support look-and-feel independence.5
The look-and-feel standard affects the layout of user interface elements
(e.g., scroll bars, buttons, menus—known collectively as "widgets") and
their decorations (e.g., shadows, beveling). A widget delegates all its
layout and drawing behavior to a separate Layout object. Changing the

Layout object changes the look and feel, even at run-time.

For each widget class there is a corresponding Layout class (e.g.,
ScrollbarLayout, MenubarLayout, etc.). An obvious problem with this

approach is that using separate layout objects doubles the number of user
interface objects: For each user interface object there is an additional

Layout object. To avoid this overhead, Layout objects are implemented as
flyweights. They make good flyweights because they deal mostly with

defining behavior, and it's easy to pass them what little extrinsic state
they need to lay out or draw an object.

…
…

o b j e c t o r i e n t e d

…

…

//localhost/Users/michelapedroni/Documents/workspace/pedronim/reading_list/software/material/gamma_patterns/hires/bibfs.htm
//localhost/Users/michelapedroni/Documents/workspace/pedronim/reading_list/software/material/gamma_patterns/hires/bibfs.htm
//localhost/Users/michelapedroni/Documents/workspace/pedronim/reading_list/software/material/gamma_patterns/hires/pat4f.htm
//localhost/Users/michelapedroni/Documents/workspace/pedronim/reading_list/software/material/gamma_patterns/hires/bibfs.htm
//localhost/Users/michelapedroni/Documents/workspace/pedronim/reading_list/software/material/gamma_patterns/hires/pat4f.htm

Object structure without flyweight

118

column

row row

o b j e c t o r i e n t e d

row

Object structure with flyweight

119

column

row row

o b j e c t o r i e n t e d

a b c d e f g h i j k l m

row

n o p q r s t u v w x y z

Object pool

Text processing

 In document processing system: one flyweight per
character code

 Other properties, such as font, position in document
etc. are stored in client.

 Basic distinction:

 Intrinsic properties of state: stored in flyweight

 ―Extrinsic‖ properties: stored in ―context‖ for each
use.

Text processing class hierarchy

121

FLYWEIGHT_

FACTORY

GLYPH

CHARACTER_
GLYPH

ROW
character

draw*

perform+

new_flyweight

flyweights

draw+

children COLUMN

children

draw+

Shared/unshared and (non-)composite objects

Two kinds of property:

Intrinsic characteristics stored in the flyweight

Extrinsic characteristics moved to the client (typically
a ―flyweight context‖)

The color of the LINE

The coordinates of the LINE

Flyweight: Original pattern

FLYWEIGHT_

FACTORY

FLYWEIGHT

SHARED_
FLYWEIGHT

UNSHARED_
FLYWEIGHT CLIENT

intrinsic_state

perform*

entire_state

perform+

new_flyweight

flyweights

perform+

Flyweight pattern: Description

Intent: ―Use sharing to support large numbers of fine-grained
objects efficiently.‖

Participants:

 FLYWEIGHT: Offers a service perform to which the
extrinsic characteristic will be passed

 SHARED_FLYWEIGHT: Adds storage for intrinsic
characteristic

 UNSHARED_FLYWEIGHT: Not all flyweights need to be
shared

 FACTORY: Creates and manages the flyweight objects

 CLIENT: Maintains a reference to flyweight, and
computes or stores the extrinsic characteristics of
flyweight

Shared/unshared and (non-)composite objects

Two kinds of flyweights:

Composites (shared or unshared)

Non-composites (shared)

Flyweight: Advantages (or when to use it)

 If a large number of objects are used, can reduce
storage use:

 By reducing the number of objects by using shared
objects

 By reducing the replication of intrinsic state

 By computing (rather than storing) extrinsic state

Flyweight: Componentization

 Fully componentizable

 Mechanisms enabling componentization:

 Constrained genericity, agents

 Uses Factory Library and Composite Library

 But: Structure is difficult to understand

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

134

Visitor pattern

Intent:

―Represents an operation to be performed on the elements
of an object structure. Visitor lets you define a new
operation without changing the classes of the elements
on which it operates.‖

 [Gamma et al., p 331]

 Static class hierarchy

 Need to perform traversal operations on
corresponding data structures

 Avoid changing the original class structure

135

Visitor application examples

Set of classes to deal with an Eiffel or Java program (in
EiffelStudio, Eclipse ...)

Or: Set of classes to deal with XML documents
(XML_NODE, XML_DOCUMENT, XML_ELEMENT,
XML_ATTRIBUTE, XML_CONTENT…)
One parser (or several: keep comments or not…)

Many formatters:

 Pretty-print

 Compress

 Convert to different encoding

 Generate documentation

 Refactor

 …

Inheritance hierarchy

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2

* deferred

+ effective

++ redefined

side1

Polymorphic data structures

(POLYGON) (CIRCLE) (POLYGON) (CIRCLE) (ELLIPSE)

from
 figs  start
until
 figs  after
loop
 figs  item  display
 figs  forth
end

figs : LIST [FIGURE]

The dirty secret of O-O architecture

Is it easy to add types
(e.g. TRIANGLE) to
existing operations

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2
side1

The dirty secret of O-O architecture

Is it easy to add types
(e.g. TRIANGLE) to
existing operations

What about the reverse: adding an operation to existing types?

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2
side1

Adding operations – solution 1

Add them
directly to the
classes

140

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

display*
rotate*

perimeter *

perimeter + perimeter +

perimeter ++

diagonal

...
...

perimeter ++

+
+

side2

perimeter ++

side1

perimeter ++

Dynamic binding will take care of finding the right version

perimeter ++

write_xml ++

write_pdf ++

write_ps ++

perimeter ++

write_xml ++

write_pdf ++

write_ps ++

perimeter +

write_xml +

write_pdf +

write_ps +

Adding operations – solution 1

But:

• operations may clutter the classes

• classes might belong to libraries out of your control
141

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

display*
rotate*

perimeter *

diagonal

...
...

+
+

side2
side1

perimeter +

write_xml +

write_pdf +

write_ps +

write_xml*
write_pdf*
write_ps*

write_xml +

write_pdf +

write_ps +

perimeter ++

write_xml ++

write_pdf ++

write_ps ++

perimeter ++

write_xml ++

write_pdf ++

write_ps ++

Adding operations – solution 2

But:

• Loose benefits of dynamic binding

• Many large conditionals
142

write_xml (f : FIGURE)
 -- Write figure to xml.

 require exists: f/= Void

 do

 …

 if attached {RECT } f as r then
 doc.put_string (“<rect/>”)
 end

 if attached {CIRCLE } f as c then
 doc.put_string (“<circle/>”)
 end

 ... Other cases …

 end
end

write_ps (f : FIGURE)
 -- Write figure to xml.

 require exists: f/= Void

 do

 …

 if attached {RECT } f as r then
 doc.put_string (r.side_a.out)
 end

 if attached {CIRCLE } f as c then
 doc.put_string (c.diameter)
 end

 ... Other cases …

 end
end

perimeter ++

accept ++

perimeter ++

accept ++

perimeter +

accept +

Adding operations – solution 3

Combine solution 1 & 2:

• Put operations into a separate class

• Add one placeholder operation accept (dynamic binding)
143

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

display*
rotate*

perimeter *

diagonal

...
...

+
+

side2
side1

perimeter +

accept +

accept*

accept +

perimeter ++

accept ++

perimeter ++

accept ++

accept +

Adding operations – solution 3

144

+
XML_

WRITER

+
PDF_

WRITER

*
VISITOR

visit_circle*
visit_rectangle*
visit_ellipse*
visit_polygon*
visit_square*

visit_circle +
visit_rectangle +
visit_ellipse +
visit_polygon +
visit_square +

visit_circle +
visit_rectangle +
visit_ellipse +
visit_polygon +
visit_square +

class CIRCLE
feature

accept (v : VISITOR)
 --Call procedure of visitor.

 do

 v.visit_circle (Current)
 end

 ... Other features …
end

class FIGURE
feature

accept (v : VISITOR)
 --Call procedure of visitor.

 deferred

 end

 ... Other features …
end

The visitor ballet

T_TARGET V_VISITOR

CLIENT

Client
(calls)

Client
(knows
about)

 t  accept (v)

 v  visit_T (Current)

v

146

Vehicle example

+
TAXI

+
BUS

*
VEHICLE

 We want to add external functionality, for example:

 Maintenance

 Schedule a vehicle for a particular day

147

Visitor participants

Target classes

 Example: BUS, TAXI

Client classes

 Application classes that need to perform

 operations on target objects

Visitor classes

 Written only to smooth out the collaboration

 between the other two

Visitor participants

Visitor

General notion of visitor

Concrete visitor

Specific visit operation, applicable to all target elements

Target

General notion of visitable element

Concrete target

Specific visitable element

148

+
MAINTENANCE_

VISITOR

+
SCHEDULE_

VISITOR

149

Visitor class hierarchies

+
TAXI

+
BUS

*
VISITOR

accept*

accept+ accept+

visit_bus*

visit_taxi + visit_taxi +

visit_bus +

visit_taxi*
*

VEHICLE

visit_bus +

Target classes Visitor classes

 v.visit_T (Current)

150

The maintenance visitor

class MAINTENANCE_VISITOR inherit

 VISITOR

feature -- Basic operations

 visit_taxi (t : TAXI)

 -- Perform maintenance operations on t.

 do

 t  send_to_garage (Next_monday)

 end

 visit_bus (b: BUS)

 -- Perform maintenance operations on b.

 do
 b  send_to_depot end
end

151

The scheduling visitor

class MAINTENANCE_VISITOR inherit

 VISITOR

feature -- Basic operations

 visit_taxi (t : TAXI)

 -- Perform scheduling operations on t.

 do

 ...

 end

 visit_bus (b: BUS)

 -- Perform scheduling operations on b.

 do
 ... end
end

152

Changes to the target classes

class BUS inherit
 VEHICLE
feature
 accept (v : VISITOR)
 -- Apply bus visit to v.
 do
 v.visit_bus (Current)‏
 end
end

deferred class
 VEHICLE
feature

 ... Normal VEHICLE

features ...

 accept (v : VISITOR)
 -- Apply vehicle visit to v.
 deferred

end

end

class TAXI inherit
 VEHICLE
feature
 accept (v : VISITOR)
 -- Apply taxi visit to v.
 do
 v.visit_taxi (Current)‏
 end
end

+
MAINT_
VISITOR

+
SCHEDULE_

VISITOR

153

The visitor pattern

+
TAXI

+
BUS

*
VISITOR

accept*

accept
+ accept

+

visit_bus*

visit_taxi + visit_taxi +

visit_bus
+

visit_tram*

*
VEHICLE

visit_bus +

Target classes

 v  visit_T (Current)

+
V_VISITOR

visit_taxi +

Visitor classes

+
T

accept
+

 t  accept (v) v

visit_bus
+

 v  visit_T (Current)

CLIENT

Example client calls:
 bus21.accept (maint_visitor)
 fleet.item.accept (maint_visitor)

154

Visitor provides double dispatch

Client:

 t.accept (v)

Target class (in accept):

 v.visit_T (t)

Visitor class V_VISITOR (in visit_T):

 v.visit_T (t)

 -- For the right V and T !

visit_taxi + accept
+

 t  accept (v) v

visit_bus
+

 v  visit_T (Current)
+

V_VISITOR
+
T

CLIENT

155

Visitor - Consequences

Makes adding new operations easy

Gathers related operations, separates unrelated ones

Avoids assignment attempts

 Better type checking

Adding new concrete element is hard

156

Visitor vs dynamic binding

Dynamic binding:

 Easy to add types

 Hard to add operations

Visitor:

 Easy to add operations

 Hard to add types

158

Visitor – Componentization

Fully componentizable

One generic class VISITOR [G]
 e.g. maintenance_visitor : VISITOR [VEHICLE]

Actions represented as agents
 actions : LIST [PROCEDURE [ANY, TUPLE [G]]]

No need for accept features

 visit determines the action applicable to the given
 element

For efficiency

Topological sort of actions (by conformance)
 Cache (to avoid useless linear traversals)

159

Visitor Library interface (1/2)

class

 VISITOR [G]

create

 make

feature {NONE} -- Initialization

 make
 -- Initialize actions.

feature -- Visitor

 visit (e : G)
 -- Select action applicable to e .
 require
 e_exists: e /= Void

feature -- Access

 actions: LIST [PROCEDURE [ANY, TUPLE [G]]]
 -- Actions to be performed depending on the element

160

Visitor Library interface (2/2)

feature -- Element change

 extend (action: PROCEDURE [ANY, TUPLE [G]])
 -- Add action to list.
 require
 action_exists: action /= Void
 ensure
 one_more: actions.count = old actions.count + 1
 inserted: actions.last = action

 append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]]])
 -- Append actions in some_actions
 -- to the end of the actions list.
 require
 actions_exit: some_actions /= Void
 no_void_action: not some_actions.has (Void)

invariant

 actions_exist: actions /= Void
 no_void_action: not actions.has (Void)

end

161

Using the Visitor Library

maintenance_visitor: VISITOR [VEHLICLE]

create maintenance_visitor.make
maintenance_visitor.append ([
 agent maintain_taxi,
 agent maintain_trolley,
 agent maintain_tram
])

maintain_taxi (a_taxi: TAXI) ...
maintain_trolley (a_trolley: TROLLEY) ...
maintain_tram (a_tram: TRAM) ...

Topological sorting of agents (1/2)

*
VEHICLE

+
TAXI

*
PUBLIC_
VEHICLE

+
TRAM

+
BUS

162

+
TROLLEY

Topological sorting of agents (2/2)

schedule_visitor.extend (agent schedule_taxi)

schedule

_taxi
schedule_trolley schedule_

bus

schedule_

vehicle

schedule_

tram

schedule_visitor.extend (agent schedule_bus)
schedule_visitor.extend (agent schedule_vehicle)
schedule_visitor.extend (agent schedule_tram)
schedule_visitor.extend (agent schedule_trolley)

 1 5 2 4 3

schedule_visitor.visit (a_bus)
163

For agent schedule_a (a: A) and schedule_b (b: B), if A conforms to
B, then position of schedule_a is before position of schedule_b in
the agent list

Visitor library vs. visitor pattern

Visitor library:

• Removes the need to change existing classes

• More flexibility (may provide a procedure for an
intermediate class, may provide no procedure)

• More prone to errors – does not use dynamic binding to
detect correct procedure, no type checking

Visitor pattern

• Need to change existing classes

• Dynamic binding governs the use of the correct
procedure (type checking that all procedures are available)

• Less flexibility (need to implement all procedures
always)

164

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

166

Strategy

Intent:

―Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it‖.

 [Gamma et al., p 315]

Example application

 selecting a sorting algorithm on-the-fly

Life without strategy: a sorting example

feature -- Sorting
 sort (il : LIST [INTEGER]; st : INTEGER)
 -- Sort il using algorithm indicated by st.
 require
 is_valid_strategy (st)
 do
 inspect
 st
 when binary then …
 when quick then …
 when bubble then …
 else …
 end
 ensure
 list_sorted: …
 end

 What if a new algorithm is needed ?

167

Strategy pattern: overall architecture

+

STRATEGY_B

+

STRATEGY_C

*

 STRATEGY

+

CONTEXT

perform

perform+ perform+ perform+

perform*
strategy

168

+

STRATEGY_A

Class STRATEGY

deferred class
 STRATEGY

feature -- Basic operation

 perform
 -- Perform algorithm according to chosen strategy.
 deferred
 end

end

169

Using a strategy

class
 CONTEXT

create
 make

feature -- Initialization

 make (s: like strategy)
 -- Make s the new strategy.
 -- (Serves both as creation procedure and to reset strategy.)
 do
 strategy := s
 ensure
 strategy_set: strategy = s
 end

 170

Using a strategy

feature – Basic operations

 perform
 -- Perform algorithm according to chosen strategy.
 do

 strategy.perform
 end

feature {NONE } – Implementation

 strategy : STRATEGY
 -- Strategy to be used

end

171

Using the strategy pattern

sorter_context: SORTER_CONTEXT
bubble_strategy: BUBBLE_STRATEGY
quick_strategy: QUICK_STRATEGY

create sorter_context.make (bubble_strategy)
sorter_context.sort (a_list)
sorter_context.make (quick_strategy)
sorter_context.sort (a_list)

 Now, what if a new algorithm is needed ? hash_strategy: HASH_STRATEGY

sorter_context.make (hash_strategy)
sorter_context.sort (a_list)

172

Application classes can
also inherit from
CONTEXT (rather
than use it as clients)

Strategy - Consequences

 Pattern covers classes of related algorithms

 Provides alternative implementations without conditional

instructions

 Clients must be aware of different strategies

 Communication overhead between Strategy and Context

 Increased number of objects

173

Strategy - Participants

Strategy
declares an interface common to all supported algorithms.

Concrete strategy
implements the algorithm using the Strategy interface.

Context
 is configured with a concrete strategy object.

 maintains a reference to a strategy object.

174

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Chain of responsibility - Intent

Intent:

 ―Avoid coupling the sender of a request to its receiver by
giving more than one object a chance to handle the
request. Chain the receiving objects and pass the request
along the chain until an object handles it.‖

Example application

A GUI event is passed from level to level (such as from

button to dialog and then to application)

176

Example: e-mail filtering

177

Spam

filter

SE-World

filter

debian
-sec

filter

e-mail

If a filter can handle the request (e-
mail) it will. Otherwise it will pass it on
to the next filter, until it drops out of
the chain of responsibility.

mark as spam move to folder
move to folder

Example implementation

178

*
FILTER

+
SPAM_FILTER

+
MAILINGLIST_

FILTER

can_handle+
do_handle+

can_handle+
do_handle+

APPLICATION
next
handle
can_handle*
do_handle*
handled
set_next

179

Filter

deferred class FILTER
feature – Access
 next : FILTER -- Successor in the chain of responsibility

feature -- Element change
 set_next (n : like next)
 -- Set next to n.
 do
 next := n
 ensure
 next_set: next = n
 end

feature -- Status report
 can_handle (r : E_MAIL): BOOLEAN deferred end
 -- Can this handler handle r?
 handled : BOOLEAN -- Has request been handled?

180

Filter

feature {NONE} -- Implementation

 do_handle (r : G)
 -- Handle r.
 require
 can_handle: can_handle (r)
 deferred
 end

feature -- Basic operations
 handle (r : E_MAIL)
 -- Handle r if can_handle otherwise forwardto next.
 -- If no next, set handled to False.
 do
 if can_handle (r) then do_handle (r) ; handled := True
 else

 if next /= Void then next.handle (r) ; handled := next.handled
 else handled := False end
 end
 ensure
 can_handle (r) implies handled
 (not can_handle (r) and next /= Void) implies handled = next.handled

 (not can_handle (r) and next = Void) implies not handled
 end
end

Concrete filters

class SPAM_FILTER inherit FILTER
create set_next, default_create
feature -- Status report
 can_handle (r : E_MAIL)
 -- Can this handler handle r?
 do
 -- Find out whether it
 -- classifies as spam.
 end

feature {NONE} – Implementation

do_handle (r : G)
 -- Handle r.
 do
 -- Mark e-mail as spam.
 end
end

181

class MAILINGLIST_FILTER
inherit FILTER
create set_next, default_create
feature -- Status report
 can_handle (r : E_MAIL)
 -- Can this handler handle r?
 do
 -- Is it an e-mail sent to a
 -- mailinglist?
 end

feature {NONE} -- Implementation
do_handle (r : G)
 -- Handle r.
 do
 -- Move to correct folder.
 end

folder : FOLDER -- Folder to move mail

… -- Implementation of set_folder
end

182

Chain of responsibility: overall architecture

*
HANDLER

+
INTERMEDIATE_

HANDLER
+

FINAL_HANDLER

can_handle+
do_handle+

can_handle+
do_handle+

next
handle
can_handle*
do_handle*
handled
set_next

APPLICATION

Chain of responsibility: Componentization

Fully componentizable

183

184

Chain of responsibility: library

*
HANDLER [G]

+
INTERMEDIATE_

HANDLER [G]
+

FINAL_HANDLER [G]

can_handle+
do_handle+

can_handle+
do_handle+

next
handle
can_handle*
do_handle*
handled
set_next

APPLICATION

185

Handlers

deferred class
 HANDLER [G]
create default_create, make

feature {NONE } -- Initialization
 make (n : like next)
 -- Set next to n.
 do
 next := n
 ensure
 next_set : next = n
 end

feature -- Access

next : HANDLER [G]
 -- Successor in the chain of responsibility

feature -- Status report
 can_handle (r : G): BOOLEAN deferred end
 -- Can this handler handle r?

 handled : BOOLEAN
 -- Has request been handled?

186

Handlers

feature -- Basic operations
 handle (r : G)
 -- Handle r if can_handle otherwise forward it to next.
 -- If no next, set handled to False.
 do
 if can_handle (r) then
 do_handle (r) ; handled := True
 else
 if next /= Void then

 next.handle (r) ; handled := next.handled
 else
 handled := False
 end
 end
 ensure
 can_handle (r) implies handled

 (not can_handle (r) and next /= Void) implies handled = next.handled

 (not can_handle (r) and next = Void) implies not handled
 end

187

Class HANDLER [G] (3/3)

feature -- Element change
 set_next (n : like next)
 -- Set next to n.
 do
 next := n
 ensure
 next_set: next = n
 end

feature {NONE} – Implementation

 do_handle (r : G)
 -- Handle r.
 require
 can_handle: can_handle (r)
 deferred
 end

end

Chain of responsibility - Consequences

Reduced coupling

 An object only has to know that a request will be handled
"appropriately―. Both the receiver and the sender have no
explicit knowledge of each other

Added flexibility in assigning responsibilities to objects

 Ability to add or change responsibilities for handling a
request by adding to or otherwise changing the chain at
run-time

Receipt is not guaranteed
 the request can fall off the end of the chain without ever

being handled

189

Chain of responsibility - Participants

Handler
 defines an interface for handling requests.

 (optional) implements the successor link.

Concrete handler
 handles requests it is responsible for.

 can access its successor.

 if the Concrete handler can handle the request, it does so; otherwise it
forwards the request to its successor.

Application (Client)
initiates the request to a Concrete handler object on the chain.

190

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

192

State pattern

Intent:

―Allows an object to alter its behavior when its internal
state changes. The object will appear to change its class‖.

Application example:

 Add attributes without changing class.

 Simulate the (impossible) case of an object changing
its type during execution.

 State machine simulation.

Example application: Drawing tool

Mouse actions have different behavior

 Pen tool

Mouse down: Start point of line

Mouse move: Continue draw of line

Mouse up: End draw line, change back to selection mode

 Selection tool
Mouse down: Start point selection rectangle

Mouse move: Update size of selection rectangle

Mouse up: Select everything inside selection rectangle

 Rectangle tool

Mouse down: Start point of rectangle

Mouse move: Draw rectangle with current size

Mouse up: End draw rectangle, change back to selection mode

…

193

Tool state

deferred class TOOL_STATE feature
 process_mouse_down (pos :POSITION)
 -- Perform operation in response to mouse down.
 deferred end

 process_mouse_up (pos :POSITION)
 -- Perform operation in response to mouse up.

 deferred end

 process_mouse_move (pos : POSITION)
 -- Perform operation in response to mouse move.
 deferred end

-- Continued on next slide

194

Tool states know their context (in this solution)

feature -- Element change
 set_context (c : CONTEXT)
 -- Attach current state to c.
 do
 context := c
 end

feature {NONE } – Implementation

 context : CONTEXT
 -- The client context using this state.

end

195

A particular state

class RECTANGLE_STATE inherit TOOL_STATE
feature -- Access
 start_position: POSITION

feature -- Basic operations
 process_mouse_down (pos :POSITION)
 -- Perform operation in response to mouse down.
 do start_position := pos end

 process_mouse_up (pos :POSITION)
 -- Perform operation in response to mouse up.
 do context.set_state (context.selection_tool) end

 process_mouse_move (pos : POSITION)
 -- Perform edit operation in response to mouse move.
 do context.draw_rectangle (start_position, pos) end

end

196

A stateful environment client

class CONTEXT feature -- Basic operations
 process_mouse_down (pos :POSITION)
 -- Perform operation in response to mouse down.
 do
 state. process_mouse_down (pos)
 end

 process_mouse_up (pos :POSITION)
 -- Perform operation in response to mouse up.
 do
 state. process_mouse_up (pos)
 end

 process_mouse_move (pos : POSITION)
 -- Perform operation in response to mouse move.
 do
 state. process_mouse_move (pos)
 end

197

Stateful client: status and element change

feature -- Access

 pen_tool, selection_tool, rectangle_tool: like state
 -- Available (next) states.

 state : TOOL_STATE.

feature -- Element change

 set_state (s : STATE)
 -- Make s the next state.
 do
 state := s.
 end

… -- Initialization of different state attributes

end

198

State pattern: overall architecture

199

+

STATE3

*
 STATE

+
 STATEFUL

perform

perform+ perform+ perform+

perform* state

context

+

STATE2

+

STATE1

In the example: process_mouse_X

State pattern - componentization

Componentizable, but not comprehensive

State - Consequences

The pattern localizes state-specific behavior and partitions
behavior for different states

It makes state transitions explicit

State objects can be shared

201

State - Participants

Stateful
 defines the interface of interest to clients.

 maintains an instance of a Concrete state subclass that defines the
current state.

State
defines an interface for encapsulating the behavior associated with a

particular state of the Context.

Concrete state
each subclass implements a behavior associated with a state of the Context

202

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Creational patterns

 Hide the creation process of objects

 Hide the concrete type of these objects

 Allow dynamic and static configuration of the system

Explicit creation in O-O languages

Eiffel:

create x.make (a, b, c)

C++, Java, C#:

x = new T (a, b, c)

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Factory Method pattern

Intent:
 ―Define[s] an interface for creating an object, but let

subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.‖
[Gamma et al.]

C++, Java, C#: emulates constructors with different names

Factory method

In client, instead of

 create {T } x.make

use
 x :=new_t

with new_t defined as

 new_t (args: G): T
 -- New instance of T
 do
 create {S} Result.make (args)
 -- S conforms to T
 end

208

Benefits of factory method

Factory method is not just the syntactic replacement of

 create {T } x.make (1)

 by

 x := factory.new_t (2)

because:

T could be a deferred class

 then (1) would not be possible

factory can take advantage of polymorphism

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
 Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Abstract factory pattern

Intent:

―Provide[s] an interface for creating families of related or
dependent objects without specifying their concrete
classes.‖ [Gamma et al.]

Abstract Factory: example

Widget toolkit (EiffelVision, Java Swing)

 Different look and feel, e.g. for Unix & Windows

 Family of widgets: Scroll bars, buttons, dialogs…

 Want to allow change of look & feel

Most parts of the system need not know which look &
feel is used

Creation of widget objects should not be distributed

Managing parallel hierarchies with factories

*
WIDGET

*
BUTTON

*
CONTAINER

*
WINDOW

*
MENU_BAR

+
WEL_

WINDOW

+
GTK_

WINDOW

+
WEL_

MENU_BAR

+
GTK_

MENU_BAR

+
WEL_

BUTTON

+
GTK_

BUTTON

We want to use factories to create WINDOWs

class

 WINDOW

…

feature

 button: BUTTON

 menu_bar: MENU_BAR

…

end

new_button+ new_box+
WEL_

FACTORY +
WEL_
BUTTON +

WEL_
CHECKBOX +

GTK_
FACTORY +

Abstract widget factory example

WINDOW_
FACTORY *

GTK_
BUTTON +

BUTTON *

GTK_
CHECKBOX +

CHECKBOX *

new_button *

new_button+
new_box+

new_box *

With an Abstract Factory (1/6)

deferred class

 WINDOW_FACTORY

feature -- Factory functions

 new_window: WINDOW deferred end

 new_button: BUTTON deferred end

 new_menu_bar: MENU_BAR deferred end

…

end

With an Abstract Factory (2/6)

class
 WEL_WINDOW_FACTORY
inherit
 WINDOW_FACTORY
create
 make
feature {NONE } -- Initialization
 make (…) do …
feature -- Factory functions
 new_window: WEL_WINDOW do …
 new_button: WEL_BUTTON do …
 new_menu_bar: WEL_MENU_BAR do …
…
end

Factory ensures that all widgets of

the window are Windows widgets

With an Abstract Factory (3/6)

class
 GTK_WINDOW_FACTORY
inherit
 WINDOW_FACTORY
create
 make
feature {NONE } -- Initialization
 make (…) do …
feature -- Factory functions
 new_window : GTK_WINDOW do …
 new_button : GTK_BUTTON do …
 new_menu_bar : GTK_MENU_BAR do …
…
end

Factory ensures that all widgets of

the window are Gtk widgets

With an Abstract Factory (4/6)

deferred class
 APPLICATION
…
feature -- Initialization
 build_window is
 -- Build window.
 local
 window: WINDOW
 do
 window := window_factory.new_window
 …
 end
feature {NONE } -- Implementation
 window_factory: WINDOW_FACTORY
 -- Factory of windows
invariant
 window_factory_not_void: window_factory /= Void
end

Abstract
notion

 Does not
name platform

With an Abtract Factory (5/6)

class
 WEL_APPLICATION
inherit
 APPLICATION
create
 make
feature {NONE } -- Initialization
 make is
 -- Create window_factory.
 do
 create {WEL_WINDOW_FACTORY }

 window_factory.make(…)

 end
…
end

With an Abtract Factory (6/6)

class

 GTK_APPLICATION
inherit

 APPLICATION
create

 make
feature {NONE} -- Initialization
 make is
 -- Create window_factory.
 do
 create {GTK_WINDOW_FACTORY }

 window_factory.make(…)

 end
…
end

Abstract factory: overall architecture

*
FACTORY

+
FACTORY_1

+
FACTORY_2

*
PRODUCT_A

+
PRODUCT_A1

+
PRODUCT_A2

+
PRODUCT_B1

+
PRODUCT_B2

*
PRODUCT_B

new_product_a*

new_product_b*

new_product_a+

new_product_b+
new_product_b+

new_product_a+

Reasons for using an abstract factory

 Most parts of a system should be independent of how
its objects are created, are represented and
collaborate

 The system needs to be configured with one of
multiple families

 A family of objects is to be designed and only used
together

 You want to support a whole palette of products, but
only show the public interface

Abstract factory pattern: properties

 Isolates concrete classes

 Makes exchanging product families easy

 Promotes consistency among products

 Supporting new kinds of products is difficult

Abstract factory pattern: criticism

Code redundancy:

The factory classes, e.g. GTK_FACTORY and
WEL_FACTORY will be similar

Lack of flexibility:

FACTORY fixes the set of factory functions
new_button and new_box

Abstract factory – Componentization

Fully componentizable

225

Abstract factory library (1/2)

class
FACTORY [G]
create
 make
feature -- Initialization
 make (f : like factory_function)
 -- Initialize with factory_function set to f.
 require
 exists: f /= Void
 do
 factory_function := f
 end
feature -- Access

 factory_function : FUNCTION [ANY, TUPLE [], G]
 -- Factory function creating new instances of type G

Abstract factory library (2/2)

feature -- Factory operations
 new : G
 -- New instance of type G
 do
 factory_function.call ([])
 Result := factory_function.last_result
 ensure
 exists: Result /= Void
 end

 new_with_args (args : TUPLE): G
 -- New instance of type G initialized with args
 do
 factory_function.call (args)
 Result := factory_function.last_result
 ensure
 exists: Result /= Void
 end
invariant
 exists: factory_function /= Void
end

The Factory Library can create only one kind of product

With the Factory Library (1/2)

deferred class
 APPLICATION
…
feature -- Initialization
 build_window
 -- Build window.
 local
 window: WINDOW
 do
 window := window_factory.new
 …
 end
feature {NONE } -- Implementation
 window_factory: FACTORY [WINDOW]
 button_factory: FACTORY [BUTTON]
 menu_bar_factory: FACTORY [MENU_BAR]
…
end Use several factory objects to create several products

With the Factory Library (2/2)

class
 WEL_APPLICATION
inherit
 APPLICATION
create
 make
feature
 make
 -- Create factories.
 do
 create {FACTORY [WEL_WINDOW]} window_factory.make (…)

 create {FACTORY [WEL_BUTTON]} button_factory.make (…)

 create {FACTORY [WEL_MENU_BAR]} menu_bar_factory.make (…)

 end
…
end

• Client must make sure that all factories

are configured to create Windows widgets

• More error-prone with several factories

However, the problem already existed in the Abstract Factory

pattern; it is concentrated in class WINDOW_FACTORY

Factory library vs. factory pattern

Advantages of the library:

 Get rid of some code duplication

 Fewer classes

 Reusability

Limitations of the library:

 Likely to yield a bigger client class (because
similarities cannot be factorized through inheritance)

Factory method vs. abstract factory

Factory method:
 Creates one object
 Works at routine level
 Helps a class perform an operation, which requires

creating an object

Abstract factory:

 Creates families of object
 Works at class level
 Uses factory methods (e.g. features new and

new_with_args of the Factory Library are factory
methods)

231

Design patterns (GoF)

Creational
 Abstract Factory
• Singleton
 Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Prototype pattern

Intent:
―Specify the kinds of objects to create using a

prototypical instance, and create new objects by
copying this prototype.‖ [Gamma 1995]

CLIENT PROTOTYPE
twin prototype

Class

Client

No need for this in Eiffel: just use function twin
from class ANY.

 y := x.twin

In Eiffel, every object is a prototype

Cloning in Java, C#, and Eiffel

Java
Class must implement the interface Cloneable defining

clone (to have the right to call clone defined in
Object)

C#
Class must implement the interface ICloneable defining

Clone (to have the right to call MemberwiseClone
defined in Object)

Next version of Eiffel
Class must broaden the export status of clone,

deep_clone inherited from ANY (not exported in
ANY)

Design patterns (GoF)

Creational
 Abstract Factory
• Singleton
 Factory Method
• Builder
 Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Builder pattern

Intent:

―Separate the construction of a complex object from
its representation so that the same construction
process can create different representations‖
 (Gamma et al.)

Example use: build a document out of components (table of
contents, chapters, index…) which may have some variants.

RTF example

237

RTF_READER
*

TEXT_
CONVERTER

+
ASCII_CONV

DOCUMENT
builder last_document

parse_rtf

convert_char*
convert_font_change*
convert_paragraph*

+
TEX_CONV

convert_char+
convert_font_change+
convert_paragraph+

convert_char+
convert_font_change+
convert_paragraph+

Builder pattern

CLIENT *
BUILDER

+
MY_BUILDER

MY_PRODUCT

PART_A

builder

last_product+

PART_B

part_a

part_b

build build*
last_product*

build+

build_product

build_part_a

build_part_b

set_part_a

set_part_b

Builder Library

deferred class
 BUILDER [G]
feature -- Access
 last_product : G
 -- Product under construction
 deferred
 end
feature -- Status report
 is_ready : BOOLEAN
 -- Ready to build last_product ?
 deferred
 end
feature -- Basic operations
 build
 -- Build last_product.
 require
 is_ready: is_ready
 deferred
 ensure
 last_product_exists: last_product /= Void
 end
end

Mechanisms enabling componentization:

unconstrained genericity, agents

+ Factory Library

Two-part builder

class
 TWO_PART_BUILDER [F −> BUILDABLE, G, H]

-- F: type of product to build
-- G: type of first part of the product
-- H: type of second part of the product

The builder knows the type of product to build and number of
parts

In the original Builder pattern:
Deferred builder does not know the type of product to build
Concrete builders know the type of product to build

TWO_PART_BUILDER is a concrete builder
  compatible with the pattern

Example using a two-part builder

class
 APPLICATION
create
 make
feature {NONE } -- Initialization
 make is
 -- Build a new two-part product with a two-part builder.
 local
 my_builder: TWO_PART_BUILDER [TWO_PART_PRODUCT,
 PART_A, PART_B]
 my_product: TWO_PART_PRODUCT
 do
 create my_builder.make (agent new_product, agent new_part_a,
 agent new_part_b)
 my_builder.build_with_args (["Two-part product"],["Part A"],["Part B"])
 my_product := my_builder.last_product
 end
feature -- Factory functions
 new_product (a_name: STRING): TWO_PART_PRODUCT do …
 new_part_a (a_name: STRING): PART_A do …
 new_part_b (a_name: STRING): PART_B do …
end

Two-part builder (1/4)

class interface
 TWO_PART_BUILDER [F −> BUILDABLE, G, H]
inherit
 BUILDER [F]
create
 make
feature {NONE } -- Initialization
 make (f: like factory_function_f; g : like factory_function_g;
 h: like factory_function_h)
 -- Set factory_function_f to f. Set factory_function_g to g.
 -- Set factory_function_h to h.
 require
 f_not_void: f /= Void
 g_not_void: g /= Void
 h_not_void: h /= Void
 ensure
 factory_function_f_set: factory_function_f = f
 factory_function_g_set: factory_function_g = g
 factory_function_h_set: factory_function_h = h
feature -- Access
 last_product : F
 -- Product under construction

Two-part builder (2/4)

feature -- Status report
 is_ready: BOOLEAN
 -- Is builder ready to build last_product?
 valid_args (args_f, args_g, args_h: TUPLE): BOOLEAN
 -- Are args_f, args_g and args_h valid arguments to
 -- build last_product?

feature -- Basic operations
 build
 -- Build last_product. (Successively call build_g and
 -- build_h to build product parts.)
 do
 last_product := f_factory.new
 build_g ([])
 build_h ([])
 ensure then
 g_not_void: last_product.g /= Void
 h_not_void: last_product.h /= Void
 end

Two-part builder (3/4)

 build_with_args (args_f, args_g, args_h: TUPLE)
 -- Build last_product with args_f. (Successively
 -- call build_g with args_g and build_h with
 -- args_h to build product parts.)
 require
 valid_args: valid_args (args_f, args_g, args_h)
 ensure
 g_not_void: last_product.g /= Void
 h_not_void: last_product.h /= Void

feature -- Factory functions
 factory_function_f: FUNCTION [ANY, TUPLE, F]
 -- Factory function creating new instances of type F
 factory_function_g: FUNCTION [ANY, TUPLE, G]
 -- Factory function creating new instances of type G
 factory_function_h: FUNCTION [ANY, TUPLE, H]
 -- Factory function creating new instances of type H

Two-part builder (4/4)

feature {NONE } -- Basic operations
 build_g (args_g: TUPLE) do …
 build_h (args_h: TUPLE) do …

feature {NONE } -- Factories
 f_factory: FACTORY [F]
 -- Factory of objects of type F

 g_factory: FACTORY [G]
 -- Factory of objects of type G

 h_factory: FACTORY [H]
 -- Factory of objects of type H

invariant
 factory_function_f_not_void: factory_function_f /= Void
 factory_function_g_not_void: factory_function_g /= Void
 factory_function_h_not_void: factory_function_h /= Void
 f_factory_not_void: f_factory /= Void
 g_factory_not_void: g_factory /= Void
 h_factory_not_void: h_factory /= Void
end

Builder Library using factories?

class
 TWO_PART_BUILDER [F −> BUILDABLE, G, H]
inherit
 BUILDER [F]
…
feature -- Factory functions
 factory_function_f: FUNCTION [ANY, TUPLE, F]
 -- Factory function creating new instances of type F
 factory_function_g: FUNCTION [ANY, TUPLE, G]
 -- Factory function creating new instances of type G
 factory_function_h: FUNCTION [ANY, TUPLE, H]
 -- Factory function creating new instances of type H

feature {NONE } -- Implementation
 build_g (args_g : TUPLE) is
 -- Set last_product.g with a new instance of type G created with
 -- arguments args_g.
 do

 last_product.set_g (g_factory.new_with_args (args_g))
 …
 end
…
end

Very flexible because one

can pass any agent as

long as it has a matching

signature and creates the

product parts

Builder Library: completeness?

Supports builders that need to create two-part or three-
part products

Cannot know the number of parts of product to be built in
general

 Incomplete support of the Builder pattern
(―Componentizable but non-comprehensive‖)

Design patterns (GoF)

Creational
 Abstract Factory
• Singleton
 Factory Method
 Builder
 Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Singleton pattern

Intent:

Way to ―ensure a class only has one instance, and to provide a
global point of access to it.‖ [Gamma et al.]

Singleton pattern

Way to ―ensure a class only has one instance, and to provide a
global point of access to it.‖ [GoF, p 127]

SINGLETON SHARED_ SINGLETON

singleton

Global point of access

Singletons in Eiffel

Once routines

But: does not prevent cloning

Once routines

If instead of

 r
 do
 ... Instructions ...
 end

you write

 r
 once
 ... Instructions ...
 end

then Instructions will be executed only for the first call by any
client during execution. Subsequent calls return immediately.

In the case of a function, subsequent calls return the result
computed by the first call.

Scheme for shared objects

class MARKET_INFO feature
 Christmas : DATE
 once

 create Result.make (...)

 end
 off_days : LIST [DATE]
 once

 create Result.make (...)

 Result.extend (Christmas)
 ...
 end
 ...
end

class APPLICATION_CLASS inherit

 MARKET_INFO

feature

 r

 do
 print (off_days)

 ...
 end
...

end

Will always return the same
instance for all instances of
MARKET_INFO (also descendant
instances)
 Provides global point of access

Ensuring the existence of only one instance

Cloning:

Class ANY has features clone (twin), deep_clone, …

One can duplicate any Eiffel object, which rules out the
Singleton pattern

clone, deep_clone, … will be exported to NONE in the next
version of Eiffel

Ensuring the existence of only one instance

Exporting creation procedure:

Creation procedure of SINGLETON should not be
exported to any other than the SHARED_SINGLETON
class:

class SINGLETON

create {SHARED_SINGLETON} default_create

end

Ensures that no other classes can create instances

But: Descendants of SHARED_SINGLETON may
change the export status and clone it!

255

Ensuring the existence of only one instance

Prohibit classes to inherit from SHARED_SINGLETON:

Make SHARED_SINGLETON frozen

Frozen means:
 Class that may not have any descendant

 Marked by a keyword frozen

 A class cannot be both frozen and deferred

Advantages:
Straightforward way to implement singletons

No problem of different once statuses

Compilers can optimize code of frozen classes

Weakness:
Goes against the Open-Closed principle

 256

Singleton with frozen classes

frozen class
 SHARED_SINGLETON
feature -- Access
 singleton: SINGLETON is
 -- Global access point to singleton
 once
 create Result
 ensure
 singleton_not_void: Result /= Void
 end
end

class
 SINGLETON

create {SHARED_SINGLETON}

 default_create

end

Singleton in Eiffel – The four ingredients

258

SINGLETON SHARED_ SINGLETON

singleton

• once feature for creating
SINGLETON

• frozen class (prohibit
inheritance)

• allow creation only to
SHARED_SINGLETON
instances

• no copy/clone features
available to clients

But: currently once is once-per-thread
(multi-threading will break the guarantee)

Singleton without frozen classes

Frozen classes require the ability to restrict the
exportation of creation procedures (constructors)

  Not applicable in C++, Java or C#

C++, Java and C# use static features to implement the
singleton pattern

Singletons in C++/Java/C#

Static classes

Making SINGLETON a static class is not enough:

 Multiple declarations of a static object are possible
(no global point of access)

 Static classes are initialized at initialization time
(which varies according to the details of the
language), but the initialization of SINGLETON may
require a later initialization at some precise point
during the program‘s execution

 If multiple SINGLETON classes exist, it may be
impossible to implement a particular initialization
order among them

Singletons in C++/Java/C#

A more flexible solution uses a (non-static) Singleton class
with hidden constructor, accessed only through a public
static method Instance to retrieve the real singleton

Compared with the class diagram seen before, this solution
coalesces SINGLETON and SHARED_SINGLETON

Similar results can be obtained by hiding the declaration
of SINGLETON inside SHARED_SINGLETON

Singletons in Java

class Singleton {

 public static Singleton Instance() {

 if (_instance == null) { _instance = new Singleton(); }

 return _instance;

 }

 protected Singleton() {
 // ...

 }

 private static Singleton _instance = null;

}

Creational patterns - Discussion

 Abstract the creation process

 Make system independent of how objects are created,
composed and represented

Creational patterns become important as systems evolve

Two recurring themes:

 encapsulate knowledge about concrete classes used

 hide how instances are created and composed

Freedom: What specific instances get created, who
creates instances, how they get created and when.

263

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Adapter pattern

Intent: ―Convert the interface of a class into another
interface clients expect. Adapter lets classes work
together that couldn‘t otherwise because of incompatible
interfaces.‖

Adapters are also called wrappers.

Motivation: Reuse available components through a
different interface.

265

Example: integrating different components

You want to extend a graphical editor to support the
manipulation and visualization of text elements.

The current implementation relies on a class hierarchy
based on the abstraction of shape:

266

EDITOR *
SHAPE

+
LINE

shapes
draw*
move*
...

draw+
move+
...

+
CIRCLE

draw+
move+
...

Example: integrating different components

You want to extend a graphical editor to support the
manipulation and visualization of text elements.

A class TEXT provides the services by adapting to the
SHAPE interface an available implementation H_TEXT

267

EDITOR *
SHAPE

+
LINE

shapes
draw*
move*
...

draw+
move+
...

+
CIRCLE

draw+
move+
...

+
TEXT

draw+
move+
...

+
H_TEXT display+

justify+
...

text

Adapter

Adapter pattern: object variant

This version of the pattern is called object adapter,
because ADAPTER uses an instance of ADAPTEE

268

CLIENT *
TARGET

target
request*

+
ADAPTER

request+

+
ADAPTEE

adaptee

not exported to
clients

Adapter pattern: class variant

This version of the pattern is called class adapter, because
ADAPTER inherits from ADAPTEE to adapt its services

269

CLIENT *
TARGET

target
request*

+
ADAPTER

request+

+
ADAPTEE

ADAPTER
doesn‘t export
ADAPTEE‘s
features to
clients

Adapter pattern: participants

Target

 defines the (specific) interface used by CLIENT

Client

 uses objects conforming to
 the interface of TARGET

Adaptee

 offers services through an existing interface
 that needs adapting

Adapter

 adapts the ADAPTEE‘s interface to the TARGET‘s
270

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Proxy patter

Intent: ―Provide a surrogate or placeholder for another
object to control access to it.‖

Motivation: Controlling when the various parts of an object
are created – for example to delay creation of the most
expensive parts until when they are actually needed.

272

Example: a document editor

A document editor uses a class DOCUMENT that
encapsulates all data about an open document.

If a new document includes large bitmap images, opening it
takes time unless the creation of the objects for the
images is postponed to when it is actually needed (e.g.,
when the client wants to display a page with images).

273

EDITOR *
DOCUMENT

+
PLAIN_TEXT

current display*
load*
...

+
IMAGE

+
IMAGE_PROXY

image

Could use
Composite
pattern

Proxy pattern

274

CLIENT *
SUBJECT

+
REAL_SUBJECT

subject
request*

+
PROXY

real_one

request+ request+

Proxy class: implementation

class PROXY
inherit SUBJECT

feature

 request

 do

 if not attached real_one then

 create {REAL_PROXY} real_one

 end

 real_one.request

 end

feature {PROXY}

 real_one: SUBJECT
end 275

Proxy patterns: participants

Proxy

• Maintains a reference to access REAL_SUBJECT

• Provides an interface identical to SUBJECT‘s

• Controls access to REAL_SUBJECT
(the control policy is application dependent)

Subject

• Defines a common interface for REAL_SUBJECT and
PROXY so that a PROXY can replace a
REAL_SUBJECT

Real Subject

• Defines the real object that PROXY represents
276

Types of proxy

Remote proxy

• The real subject is in a different physical or logical
location

• The proxy is responsible for sending requests

• Decoupling between client and actual provider

Virtual proxy

• Mediate object creation

• Provide caching and sharing (as in the example)

Protection proxy

• Authorize or reject access to the real object
according to the permissions of the client

277

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Iterator pattern

Intent: ―Provide a way to access the elements of an
aggregate object sequentially without exposing its
underlying representation.‖

Motivation: decouple different types of ―sequentialization‖
routines from the interface of the aggregate object.

Example: a tree data structure, with different iterators
providing pre-order, post-order, in-order, and breadth-
first trasversals.

279

Iterator pattern

280

*
AGGREGATE

+
AGGREGATE_X

default_iterator*

item*

*
ITERATOR

+
ITERATOR_Y

start*
forth*
after*
...

default_iterator+

item+

Iterator pattern: participants

Iterator

• Defines an interface for accessing and traversing
elements

Concrete iterator

• Implements the actual traversal algorithm

Aggregate

• Provides a default iterator in the interface

Concrete aggregate

• Is linked to a concrete iterator as default

• Makes it possible to implement certain trasversals

281

Iterator pattern: features

• Different traversals of the same aggregate

• Adding new traversals does not change the interface
of aggregates

A cursor is the simplest form of an iterator, which
only maintains a reference to the current element.
The client defines its own traversal algorithm using
the other features of the iterator.

• Several iterators can traverse the same aggregate
simultaneously

• The features of a default iterator can be included in
the aggregate‘s interface

 This is done extensively in EiffelBase

282

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
 Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Template method pattern

Intent: ―Define the skeleton of an algorithm in an
operation, deferring some steps to subclasses. Template
method lets subclasses redefine certain steps of an
algorithm without changing the algorithm‘s structure.‖

A template method is similar to pseudo-code, where the
deferred operations are refined by effecting
(implementation) in subclasses.

284

Example: two-player games (1/2)

deferred class GAME

feature {GAME} -- Deferred operations

 initialize deferred end -- initialize the game

 play_one deferred end -- player one moves

 play_two deferred end -- player two moves

feature {ANY} -- Status

 done: BOOLEAN

 winner: BOOLEAN -- True iff player one has won
 require game_over: done
 attribute end

285

Example: two-player games (2/2)

feature {ANY} -- template method

 play_until_winner

 -- play until somebody wins

 require not_over: not done

 local turn: INTEGER

 do

 from initialize

 until done

 loop

 if turn.is_even then play_one

 else play_two end

 turn := turn + 1

 end

 if turn.is_even then winner := False

 else winner := True end

 ensure game_over: done

 end

286

Template method pattern

287

*
TEMPLATE

+
INSTANCE

primitive_operation_1*
primitive_operation_2*
primitive_operation_3*
...

template_method+

primitive_operation_1+
primitive_operation_2+
primitive_operation_3+
...

Primitive
operations
exported
only to
descendants

Exported to
any client

May have partial
or default
implementations
(hooks)

Template method pattern: when to use

To implement the invariant parts of an algorithm

To factor out common behavior among subclasses and avoid
code duplication

 ―refactoring to generalize‖

To control behavior of subclasses: only primitive
operations should be implemented or redefined

  frozen routines in Eiffel

288

Template method: componentizability

Classes with template methods can be implemented as
components

• primitive operations provided as agents

• disadvantage: fewer static checks of complete
implementations

289

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
 Iterator
• Mediator
• Memento
 Observer
 State
 Strategy
 Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Mediator pattern

Intent: ―Define an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling by
keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently.―

Motivation: OO design encourages distribution
of behavior among objects. Strong distribution:

• Can result in structure with many
connections between objects

• Objects less likely to work without support
of other objects

• More difficult to change system‗s behavior
significantly, since behavior distributed

291

Mediator pattern: Example

Example:

• Dialog box presents
collection of widgets

• Dependencies
between widgets (fonts
have different styles
and sizes; Check boxs
are dependent)

292

Mediator pattern: Example

• Different dialog boxes have different dependencies
between widgets

• Cannot simply reuse stock widget classes

• Customizing (through subclassing) could be tedious since many
classes are involved

• Avoid these problems by encapsulating collective
behavior in a separate mediator object

293

A mediator serves as an intermediary that keeps
objects in a group from referring to each other explicitly.

The objects only know the mediator, thereby reducing
the number of interconnections.

Mediator pattern: Example

• Mediator acts as a hub of communication for widgets

294

fdd: FONT_DIALOG_DIRECTOR

cl: CLIENT
director

cb: CHECK_BOX
director

lb: LIST_BOX
director

tf: TEXT_FIELD
director

List box tells
director that
it‘s changed.

Director gets
the selection
from the list
box.

Director passes
selection to text
field.

Client calls
director to
show dialog.

Mediator pattern: Structure

295

*
MEDIATOR

+
CONCREATE_MEDIATOR

+
CONCRETE_COLLEAGUE1

mediator+ *
COLLEAGUE

+
CONCRETE_COLLEAGUE2

Mediator pattern: participants

MEDIATOR
• Defines an interface for communicating with COLLEAGUE objects

CONCRETE_MEDIATOR
• Implements cooperative behavior by coordinating COLLEAGUE
objects

• Knows and maintains colleagues

COLLEAGUE classes
• Each COLLEAGUE class knows its MEDIATOR object

• Each colleague communicates with its mediator whenever it would
have otherwise communicated with another colleague

296

Mediator pattern: when to use

Use the Mediator pattern when

• Objects communicate in well-defined but complex ways
  Resulting dependencies are unstructured and
difficult to understand

• Object reuse is difficult because it refers to /
communicates with many other objects

• Behavior distributed over several classes should be
customizable without a lot of subclassing

297

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
 Iterator
 Mediator
• Memento
 Observer
 State
 Strategy
 Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Memento pattern

Intent: ―Without violating encapsulation, capture and
externalize an object‗s internal state so that the object
can be restored to this state later.―

Motivation: want to record internal state of an object (e.g.
as checkpoint or for undo). Objects normally encapsulate
some or all of their state; exposing it would violate
encapsulation, thus compromising reliability and
extensiblity of the application.

299

Memento pattern: Example

Example

• An object stores form information

• We allow users to make changes to values in the form

• In case of a mistake, users can revert to the previous
values in the form.

Instead of exposing all information of the form object,
the form object offers a mechanism to store its state
 it allows for the creation of a memento object.

300

A memento is an object that stores a snapshot
of another object – the memento‘s originator.

set_memento restores the
originator‘s state based on
the information stored in
MEMENTO object m.

Memento pattern: Structure

301

+
ORIGINATOR

+
MEMENTO

create_memento+
set_memento(m: MEMENTO)+

state+

+
CARETAKER

memento+

state+

Caretaker calls
create_memento before
changing originator; stores
resulting MEMENTO object.

Memento pattern: participants

MEMENTO
• Stores internal state of the ORIGINATOR object

• Protects against access by objects other than the originator
• CARETAKER sees narrow interface – can only pass the memento to

other objects

• Originators sees wide interface – allows access to all data necessary to
restore the state

ORIGINATOR
• Creates a memento containing a snapshot of its current internal
state

• Uses the memento to restore its internal state

CARETAKER
• Responsible for the memento‘s safekeeping

• Never operates on or examines the contents of a memento

302

Memento pattern: when to use

Use the Memento pattern when

• A snapshot of (some portion of) an object‘s state must
be saved so that it can be restored to that state later,

and

• A direct interface to obtaining the state would expose
implementation details and break the object‘s
encapsulation

303

Design patterns (GoF)

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
 Iterator
 Mediator
 Memento
 Observer
 State
 Strategy
 Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Interpreter pattern

Intent: ―Given a language, define a representation for its
grammar along with an interpreter that uses the
representation to interpret sentences in the language.―

Motivation: if sentences of a simple language occur often
enough, it might be worthwhile to build an interpreter for
them

Example: check whether a string matches a regular
expression

 String: dog dog cat weather

 Reg. expr.: ((`dog ‗`|`cat `)* & `weather`

305

Interpreter pattern: Example

• A grammar for regular expressions:

experssion ::= literal | alternation | sequence | repetition |

 `(`expression`)`
alternation ::= expression `|` expression
sequence ::= expression `&` expression

repetition ::= expression `*`

literal ::= `a` | `b` | `c` | ... { `a` | `b` | `c` | ... }*

Start symbol: expression Terminal symbol: literal

• Given inputs
• regular expression (as an AST)

• a string

the Interpreter implements an interpretation/evaluation
of the input (check if string matches reg. Expr)

306

Does not build the AST:
it works on it.

Interpreter pattern

• Interpreter pattern uses a class to represent
each grammar rule

• Each class has an ―interpret‖ procedure

• Symbols on the right-hand side of the rule
are attributes of the classes

307

Interpreter pattern: Example

Class digram for AST

308

*
EXPRESSION

+
LITERAL

seq_expression1 +
seq_expression2 +

interpret*

+
SEQUENCE

+
REPETITION

+
ALTERNATION interpret+

interpret+
literal+

interpret+ interpret+

alt_expression1+
alt_expression2+ rep_expression+

Interpreter pattern: Example

• Input AST : ((`dog `|`cat `)* & `weather`

309

seq: SEQUENCE
seq_expression1
seq_expression2

lit1: LITERAL
literal = „weather―

lit2: LITERAL
literal = „dog―

lit2: LITERAL
literal = „cat―

rep: REPETITION
rep_expression

alt: ALTERNATION
alt_expression1
alt_expression2

Interpreter pattern: Example

• Create interpreter for regular expression by defining
the interpret procedure on each subclass of EXPRESSION

• interpret takes as argument a context in which to
interpret the expression; context contains the input string
and information on how much of it has been matched so
far

• interpret for LITERAL: checks if input matches the literal it
defines

• interpret for ALTERNATION: checks if input machtes any of its
alternatvies

• interpret for REPETITION: checks if the input has multiple copies
of expression it repeats

 310

Interpreter pattern: Structure

311

*
ABSTRACT_EXPR

interpret*

+
TERMINAL_EXPR

+
NONTERMINAL_EXPR

interpret+ interpret+

expression+
…

+
CLIENT

+
CONTEXT

Interpreter pattern: participants (1/2)

ABSTRACT_EXPR
• Declares an abstract interpret operation that is common to all
nodes in the abstract syntax tree

TERMINAL_EXPR
• Implements and Interpret operation associated with terminal
symbols in the grammar

• An instance is required for every terminal symbol in a sentence

NONTERMINAL_EXPR
• One such class is required for every rule in the grammar

• Maintains attributes of type ABSTRACT_EXPR for each rule‘s
subexpressions

• Implements an Interpret procedure for nonterminal symbols in the
grammar

312

Interpreter pattern: participants (2/2)

CONTEXT

• Contains information that is global to the interpreter

CLIENT

• Builds (or is given) an AST representing a particular
sentence in the language the grammar defines (AST is
assembled from instances of the NONTERMINAL_EXPR
and TERMINAL_EXPR classes)

• Invokes the interpret operation

313

Interpreter pattern: when to use

Use the Interpreter pattern when

• The grammar is simple. For complex grammars, the class
hierarchy becomes large and unmanageable. Parser
generators are a better alternative then.

• Efficiency is not a critical concern. More efficient
interpreters usually don‘t work on the AST but translate it
first into another form (e.g. regular expression are
translated into state machines)

314

Design patterns (GoF): that’s all, folks

Creational
 Abstract Factory
 Singleton
 Factory Method
 Builder
 Prototype

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
 Interpreter
 Iterator
 Mediator
 Memento
 Observer
 State
 Strategy
 Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

Summary of patterns – Structural patterns

316

Bridge:
Separation of
interface from
implementation

Composite:
Uniform handling
of compound and
individual objects

Decorator: Attaching
responsibilities to objects
without subclassing

Façade: A unified interface
to a subsystem

Flyweight: Share objects
and externalize state

Summary of patterns – Behavioral patterns

317

Observer; MVC: Publish-
subscribe mechanism (use
EVENT_TYPE with agents!);
Separation of model and view

Command: History with
undo/redo (use version with
agents!)

Visitor: Add operations to
object hierarchies without
changing classes

Strategy: Make algorithms
interchangeable

Chain of responsibility: Allow
multiple objects to handle
request

State: Object appears to
change behavior if state
changes

Summary of patterns – Creational patterns

318

Abstract factory: Hiding
the creation of product
families

Factory method: Interface
for creating an object, but
hiding its concrete type
(used in abstract factory)

Prototype: Use twin or clone
to duplicate an object

Builder:
Encapsulate
construction
process of a
complex object

Singleton:
Restrict a class
to globally have
only one
instance and
provide a global
access point to
it

Complementary material Singleton (1/3)

From Patterns to Components:
Chapter 18: Singleton

Further reading:
 Erich Gamma: Design Patterns, 1995.
 (Singleton, p 127-134)

 Karine Arnout and Éric Bezault. ―How to get a Singleton in

Eiffel‖, JOT, 2004.
http://www.jot.fm/issues/issue_2004_04/article5.pdf.

http://www.jot.fm/issues/issue_2004_04/article5.pdf
http://www.jot.fm/issues/issue_2004_04/article5.pdf
http://www.jot.fm/issues/issue_2004_04/article5.pdf
http://www.jot.fm/issues/issue_2004_04/article5.pdf
http://www.jot.fm/issues/issue_2004_04/article5.pdf
http://www.jot.fm/issues/issue_2004_04/article5.pdf
http://www.jot.fm/issues/issue_2004_04/article5.pdf

Complementary material Singleton (2/3)

Further reading:

 Joshua Fox. ―When is a singleton not a singleton?‖, JavaWorld,
2001. http://www.javaworld.com/javaworld/jw-01-2001/jw-
0112-singleton.html.

 David Geary. ―Simply Singleton‖, JavaWorld, 2003.
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-
designpatterns.html.

 Robert C. Martin. ―Singleton and Monostate‖, 2002.
http://www.objectmentor.com/resources/articles/SingletonAnd
Monostate.pdf.

http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-01-2001/jw-0112-singleton.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.javaworld.com/javaworld/jw-04-2003/jw-0425-designpatterns.html
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf
http://www.objectmentor.com/resources/articles/SingletonAndMonostate.pdf

Complementary material Singleton (3/3)

Further reading:

 Miguel Oliveira e Silva. ―Once creation procedures‖.
comp.lang.eiffel.
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-
8&threadm=GJnJzK.9v6%40ecf.utoronto.ca&prev=/groups%3Fd
q%3D%26hl%3Den%26lr%3D%26ie%3DUTF-
8%26group%3Dcomp.lang.eiffel%26start%3D525.

http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6@ecf.utoronto.ca&prev=/groups?dq=&hl=en&lr=&ie=UTF-8&group=comp.lang.eiffel&start=525
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6@ecf.utoronto.ca&prev=/groups?dq=&hl=en&lr=&ie=UTF-8&group=comp.lang.eiffel&start=525
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6@ecf.utoronto.ca&prev=/groups?dq=&hl=en&lr=&ie=UTF-8&group=comp.lang.eiffel&start=525
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6@ecf.utoronto.ca&prev=/groups?dq=&hl=en&lr=&ie=UTF-8&group=comp.lang.eiffel&start=525
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6@ecf.utoronto.ca&prev=/groups?dq=&hl=en&lr=&ie=UTF-8&group=comp.lang.eiffel&start=525
http://groups.google.com/groups?dq=&hl=en&lr=&ie=UTF-8&threadm=GJnJzK.9v6@ecf.utoronto.ca&prev=/groups?dq=&hl=en&lr=&ie=UTF-8&group=comp.lang.eiffel&start=525

Design patterns: References

 Erich Gamma, Ralph Johnson, Richard Helms, John
Vlissides: Design Patterns, Addison-Wesley, 1994

 Jean-Marc Jezequel, Michel Train, Christine Mingins:
Design Patterns and Contracts, Addison-Wesley, 1999

 Karine Arnout: From Patterns to Components, 2004 ETH
thesis, http://e-
collection.ethbib.ethz.ch/eserv/eth:27168/eth-27168-
02.pdf

http://se.inf.ethz.ch/people/arnout/patterns/
http://se.inf.ethz.ch/people/arnout/patterns/
http://se.inf.ethz.ch/people/arnout/patterns/
http://se.inf.ethz.ch/people/arnout/patterns/
http://se.inf.ethz.ch/people/arnout/patterns/
http://se.inf.ethz.ch/people/arnout/patterns/
http://se.inf.ethz.ch/people/arnout/patterns/

Pattern componentization: references

Bertrand Meyer:The power of abstraction, reuse and simplicity: an
object-oriented library for event-driven design, in From Object-
Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl,
Lecture Notes in Computer Science 2635, Springer-Verlag, 2004,
pages 236-271
 se.ethz.ch/~meyer/ongoing/events.pdf

Karine Arnout and Bertrand Meyer: Pattern Componentization: the
Factory Example, in Innovations in Systems and Software Technology
(a NASA Journal) (Springer-Verlag), 2006
 se.ethz.ch/~meyer/publications/nasa/factory.pdf

Bertrand Meyer and Karine Arnout: Componentization: the Visitor
Example, in Computer (IEEE), vol. 39, no. 7, July 2006, pages 23-30
 se.ethz.ch/~meyer/publications/computer/visitor.pdf

 Bertrand Meyer, Touch of Class, 16.14 Reversing the structure:
Visitor and agents, page 606 – 613, 2009
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pd

f

http://www.inf.ethz.ch/~meyer/ongoing/events.pdf
http://se.ethz.ch/~meyer/publications/nasa/factory.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf

