
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 9: Path Planning

2

Getting to Zurich HB from RZ building

 Tram 6, 7 to Bahnhofstrasse/HB

 Tram 10 to Bahnhofplatz/HB

 Walk down on Weinbergstrasse to Central then to HB

 Walk down on Leonhard-Treppe to Walcheplatz to Walchebrücke to
HB

 Bike down on Weinbergstrasse

 ...

Each path offers different cost in terms of

 Time

 Convenience

 Crowdedness

 Ease

 ...

Path planning

3

Path planning

Path planning: a collection of discrete motions between a start and a
goal

Strategies

 Graph search

 Covert free space to a connectivity graph

 Apply graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal

4

Configuration space: point-mass robot

Free space

Obstacle

5

Configuration space: circular robot

Free space

Obstacle

6

Configuration space

Configuration space C

 A set of all possible configurations of a robot

 In mobile robots, configuration (pose) is represented by (x, y, θ)

 For a differential-drive robot, there are limited robot velocities in
each configuration.

For path planning, assume that

 the robot is holonomic

 the robot has a point-mass

 Must inflate the obstacles in a map to compensate

7

Path planning: graph search

 Graph construction

 Visibility graph

 Voronoi diagram

 Exact cell decomposition

 Approximate cell decomposition

 Graph search

 Deterministic graph search

 Randomized graph search

8

Graph construction

9

Visibility graph

Goal

Start

10

Visibility graph

Advantages

 Optimal path in terms of path length

 Simple to implement

Issues

 Number of edges and nodes increase with the number of obstacle
polygons

 Resulting path takes the robot as close as possible to obstacles

 A modification to the optimal solution is necessary to
ensure safety

11

Voronoi diagram

Goal

Start

12

Voronoi diagram

 For each point in free space, compute its distance to the nearest
obstacle.

 At points that are equidistant to two or more obstacles, create
ridge points.

 Connect the ridge points to create the Voronoi diagram

13

Voronoi diagram

Advantages

 Maximize the distance between a robot and obstacles

 Keeps the robot as safe as possible

 Executability

 A robot with a long-range sensor can follow a Voronoi edge
in the physical world using simple control rules: maximize
the readings of local minima in the sensor values.

Issues

 Robots with short-range sensor may fail to localize.

14

Exact cell decomposition

Goal

Start

15

Exact cell decomposition

Advantages

 In a sparse environment, the number of cells is small regardless of
actual environment size.

 Robots can move around freely within a free cell.

Issues

 The number of cells depends on the destiny and complexity of
obstacles in the environment

16

Approximate cell decomposition

Variable-size cell decomposition

Goal

Start

17

Approximate cell decomposition

Fixed-size cell decomposition

Start

Goal

18

Approximate cell decomposition

Variable-size

 Recursively divide the space into rectangles unless

 A rectangle is completely occupied or completely free

 Stop the recursion when

 A path planner can compute a solution, or

 A limit on resolution is attained

Fixed-size

 Divide the space evenly

 The cell size is often independent of obstacles

19

Approximate cell decomposition

Advantages

 Low computational complexity

Issues

 Narrow passage ways can be lost

20

Graph search

Goal

Start

A

B

C

D

E

F

G

21

Deterministic graph search

Convert the environment map into a connectivity graph

Find the best path (lowest cost) in the connectivity graph

f(n) = g(n) + ε h(n)

 f(n): Expected total cost

 g(n): Path cost

 h(n): Heuristic cost

 ε: Weighting factor

 n: node/grid cell

g(n) = g(n’) + c(n, n’)

 c(n, n’): edge traversal cost

22

Breadth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A D

B FE G

C C Goal GoalG

f(n) = g(n) where c(n, n’) = 1

23

Depth-first search

Goal

Start

A

B

C

D

E

F

G

Start

A D

B FE G

C C Goal G

Goal Goal

f(n) = g(n) where c(n, n’) = 1

24

Breadth-first search vs depth-first search

Breadth-first
 All the paths need to be

stored.

 When a path to the goal is

Depth-first
 Expand each node up to the

deepest level of the graph
first.

 May revisit previously visited
nodes or redundant paths.

 Reduction in space complexity:
Only need to store a single
node

25

Dijkstra’s algorithm

Goal

Start

A

B

C

D

E

F

G

f(n) = g(n) + 0 * h(n)

Goal

C G

B

E

F

Start

DA

26

dijkstra_shortest_path (map: GRID_MAP; start_cell: GRID_CELL; goal_cell: GRID_CELL)

local

c: GRID_CELL

do

map.initialize_all_cells(start_cell)

from until map.is_visited(goal_cell) or map.all_cells_visited loop

c := map.closest_unvisited_cell -- with minimum path cost

map.set_visited(c)

map.update_expected_cost(c)

end

end

Dijkstra’s algorithm

27

initialize_all_cells (start_cell : GRID_CELL)

do

across grid_cells as c loop

if c = start_cell then

c.set_distance(0)

c.set_visited(true)

else

c.set_distance((create {REAL_32}).max_value)

c.set_visited(false)

end

end

end

Dijkstra’s algorithm

28

Dijkstra’s algorithm

update_expected_cost_cost (start_cell : GRID_CELL)

local

d : REAL_32

do

across neighboring_cells(start_cell) as c loop

d := start_cell.distance + start_cell.compute_distance(c)

if d < c.distance and not c.is_visited then

c.distance := d

c.previous_vertex := start_cell

end

end

end

29

A* algorithm

Goal

Start

A

B

C

D

E

F

G

Start

A D

G

Goal

f(n) = g(n) + h(n)

30

A*_shortest_path (map: GRID_MAP; start_cell: GRID_CELL; goal_cell: GRID_CELL)

local

c : GRID_CELL

do

map.initialize_open_list(start_cell)

map.set_goal(goal_cell)

from until map.is_closed(goal_cell) or not map.has_open_vertices loop

c := map.loweset_expected_cost_cell_in_open_list

map.move_to_closed_list(c)

across map.neighboring_cells(c) as n loop

if not map.is_occupied(n) and not map.is_in_closed_list(n) then

if not map.is_in_open_list(n) then

map.add_to_open_list(n, c)

elseif map.has_lower_expected_cost(n, c) then

map.update_open_list(n, c)

end

end

end

end

end

A* algorithm

31

initialize_open_list (cell : GRID_CELL)

do

cell.set_g_score(0)

cell.compute_f_score(heurist_cost(cell, goal_cell))

open_list.add(cell)

end

add_to_open_list (cell : GRID_CELL; parent_cell : GRID_CELL)

do

cell.set_previous_cell(parent_cell)

cell.set_g_score(parent_cell.g_score + compute_distance(cell, parent_cell))

cell.compute_f_score(heurist_cost(cell, goal_cell))

open_list.add(cell)

end

A* algorithm

32

has_lower_expected_cost (cell : GRID_CELL; parent_cell : GRID_CELL) : BOOLEAN

local

g_score : REAL_32

f_score : REAL_32

do

g_score := parent_cell.g_score + compute_distance(cell, parent_cell)

f_score := g_score + heuristic_cost(cell, goal_cell)

if f_score < cell.f_score then

Result := true

else

Result := false

end

end

update_open_list (cell : GRID_CELL; parent_cell : GRID_CELL)

do

cell.set_previous_cell(parent_cell)

cell.set_g_score(parent_cell.g_score + compute_distance(cell, parent_cell))

cell.compute_f_score(heurist_cost(cell, goal_cell))

end

A* algorithm

33

Dijkstra algorithm vs A* algorithm

Dijkstra
 f(n) = g(n)

 H(n) = 0

 When computed from the goal,
the best path from any cell to
the goal can be found

A*
 f(n) = g(n) + ε h(n)

 h(n) = || n – ngoal ||

 ε = 1 leads to the optimal A*
solution

 ε > 1 results in a greedy
solution

35

Randomized graph search

 Initialize a tree

 Add nodes to the tree until a termination condition is triggered

 During each step:

 Pick a random configuration qrand in the free space.

 Compute the tree node qnear closest to qrand

 Grow an edge (with a fixed length) from qnear to qrand

 Add the end qnew of the edge if it is collision free

36

Randomized graph search

Advantages

 Can address situations in which exhaustive search is not an option.

Issues

 Cannot guarantee solution optimality.

 Cannot guarantee deterministic completeness.

 If there is a solution, the algorithm will eventually find it as the
number of nodes added to the tree grows to infinity.

37

Path planning strategies

 Graph search

 Covert free space to a connectivity graph

 Apply graph search algorithm to find a path to the goal

 Potential field planning

 Impose a mathematical function directly on the free space

 Follow the gradient of the function to get to the goal

38

Pontential field

Create a gradient to direct the robot to the goal position

Main idea

 Robots are attracted toward the goal.

 Robots are repulsed by obstacles.

F(q) = - 𝛻U(q)

 F(q): artificial force acting on the robot at the position q = (x, y)

 U(q): potential field function

 𝛻U(q): gradient vector of U at position q

 U(q) = Uattractive(q) + Urepulsive(q)

 F(q) = Fattractive(q) + Frepulsive(q) = - 𝛻Uattractive(q) - 𝛻Urepulsive(q)

39

Attractive potential

Uattractive(q) =
1

2
kattrative ∙ ρ2

goal(q)

 kattrative: a positive scaling factor

 ρgoal(q): Euclidean distance ||q - qgoal||

Fattractive(q) = - 𝛻Uattractive(q)

= - kattrative ρgoal(q) 𝛻 ρgoal(q)

= - kattrative (q - qgoal)

 Linearly converges toward 0 as the robot reaches the goal

40

Repulsive potential

Urepulsive(q) =

1

2
krepulsive (

1

ρ(q)
−

1

ρ0
)2 ρ(q) ≤ ρ0

0 ρ(q) > ρ0

 krepulsive: a positive scaling factor

 ρ(q): minimum distance from q to an object

 ρ0: distance of influence of the object

Frepulsive(q) = - 𝛻Urepulsive(q)

=
krepulsive (

1

ρ(q)
−

1

ρ0
)

1

ρ2(q)
q − qobstacle

ρ(q)
ρ(q) ≤ ρ0

0 ρ(q) ≤ ρ0

 Only for convex obstacles that are piecewise differentiable

41

Potential field

Advantages

 Both plans the path and determines the control for the robot.

 Smoothly guides the robot towards the goal.

Issues

 Local minima are dependent on the obstacle shape and size.

 Concave objects may lead to several minimal distances, which can
cause oscillation

