Software Verification

Sebastian Nanz

Lecture 10: Abstract Interpretation
Abstract Interpretation

Introduction
In the past lectures we have introduced a particular style of program analysis: data flow analysis.

For these types of analyses, and others, a main concern is correctness: how do we know that a particular analysis produces sound results (does not forget possible errors)?

In the following we discuss abstract interpretation, a general framework for describing program analyses and reasoning about their correctness.
Main ideas: Concrete computations

- An ordinary program describes computations in some **concrete domain** of values.
 - **Example**: program states that record the integer value of every program variable.

\[\sigma \in \text{State} = \text{Var} \rightarrow \mathbb{Z} \]

- Possible computations can be described by the **concrete semantics** of the programming language used.
Main ideas: Abstract computations

- Abstract interpretation of a program describes computation in a different, abstract domain.

- **Example**: program states that only record a specific property of integers, instead of their value: their sign, whether they are even/odd, or contained in \([-32768, 32767]\) etc.

\[
\sigma \in \text{AbstractState} = \text{Var} \rightarrow \{\text{even, odd}\}
\]

- In order to obtain abstract computations, an abstract semantics for the programming language has to be defined.
- Abstract interpretation provides a framework for proving that the abstract semantics is sound with respect to the concrete semantics.
The collecting semantics

We assume the state of a program to be modeled as:

$$\sigma \in \text{State} = \text{Var} \rightarrow \mathbb{Z}$$

We will use the following notation for function update:

$$\sigma[x \mapsto k](y) = \begin{cases} k & \text{if } x = y \\ \sigma(y) & \text{otherwise} \end{cases}$$

We will write $$[e]_\sigma$$ to denote the value of an expression $$e$$ in state $$\sigma$$.

We construct the collecting semantics as a function which gives for every program label the set of all possible states.

$$C : \text{Labels} \rightarrow \mathcal{P}(\text{State})$$
Rules of the collecting semantics

\[C_{l'} = \{ \sigma[x \mapsto n] \mid \sigma \in C_l \text{ and } [e]\sigma = n \} \]

\[C_{ltrue} = \{ \sigma \mid \sigma \in C_l \text{ and } [b]\sigma = true \} \]

\[C_{lfalse} = \{ \sigma \mid \sigma \in C_l \text{ and } [b]\sigma = false \} \]

\[C_l = C_{l1} \cup C_{l2} \]

Note: In difference to the lecture on program analysis, labels are not on blocks, but on edges.
Example: Collecting semantics

Assume $x > 0$.

\[\downarrow^1 \]
\[[y := 1] \]
\[\downarrow^2 \]
\[[x \neq 0] \rightarrow \]
\[[y := x \cdot y] \]
\[\downarrow^3 \]
\[[x := x - 1] \]

\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) > 0 \} \\
C_2 &= \{ \sigma[y \mapsto 1] \mid \sigma \in C_1 \} \cup \{ \sigma[x \mapsto \sigma(x) - 1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_4 &= \{ \sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_3 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
\end{align*}
Solving the equations

- The equation system we obtain has variables C_1, \ldots, C_5 which are interpreted over the complete lattice $\mathcal{P}(\text{State})$.
- We can express the equation system as a monotone function $F : \mathcal{P}(\text{State})^5 \rightarrow \mathcal{P}(\text{State})^5$
 \[
 F(C_1, \ldots, C_5) = (\{\sigma \mid \sigma(x) > 0\}, \ldots, C_2 \cap \{\sigma \mid \sigma(x) = 0\})
 \]
- Using Tarski's Fixed Point Theorem, we know that a least fixed point exists.
- We have seen: The least fixed point can be computed by repeatedly applying F, starting with the bottom element $\bot = (\emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$ of the complete lattice until stabilization.

 \[
 F(\bot) \subseteq F(F(\bot)) \subseteq \ldots \subseteq F^n(\bot) = F^{n+1}(\bot)
 \]
Example: Fixed Point Computation

\[\begin{align*}
& \downarrow^1 \emptyset \{ [x \mapsto m, y \mapsto n] \mid m > 0 \} \\
& [y := 1] \\
& \downarrow^2 \emptyset \{ [x \mapsto m, y \mapsto 1] \mid m > 0 \} \cup \{ [x \mapsto m-1, y \mapsto m] \mid m > 0 \} \\
& [x \neq 0] \quad \emptyset \{ [x \mapsto 0, y \mapsto m] \mid m > 0 \} \quad \text{... etc.} \\
& \downarrow^3 \emptyset \{ [x \mapsto m, y \mapsto 1] \mid m > 0 \} \\
& [y := x \cdot y] \\
& \downarrow^4 \emptyset \{ [x \mapsto m, y \mapsto m] \mid m > 0 \} \\
& [x := x - 1] \\
& \end{align*} \]

\[\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) > 0 \} \\
C_2 &= \{ [\sigma[y \mapsto 1] \mid \sigma \in C_1 \} \cup \\
& \quad \{ [\sigma[x \mapsto \sigma(x) - 1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ [\sigma \mid \sigma(x) \neq 0 \} \\
C_4 &= \{ [\sigma[y \mapsto \sigma(x) \cdot \sigma(y)] \mid \sigma \in C_3 \} \\
C_5 &= C_2 \cap \{ [\sigma \mid \sigma(x) = 0 \} \\
\end{align*} \]
Domain for Sign Analysis

We want to focus on the sign of integers, using the domain

$$\sigma \in \text{AbstractState} = \text{Var} \rightarrow \text{Signs}$$

where Signs is the following structure:

A complete lattice

\top represents all integers
$+$ the positive integers
$-$ the negative integers
0 the set $\{0\}$
\bot the empty set

How is such a structure called?
A complete lattice
Example: Sign Analysis

Assume $x > 0$. Use the abstract domain for sign analysis.

1. $[y:=1]$
2. $[x \neq 0]$
3. $[y:=x*y]$
4. $[x:=x-1]$

$A_1 = [x \mapsto +, y \mapsto T]$

$A_2 = A_1[y \mapsto +] \sqcup$

$A_4[x \mapsto A_4(x) \ominus +]$

$A_3 = A_2$

$A_4 = A_3[y \mapsto A_3(x) \otimes A_3(y)]$

$A_5 = A_2 \sqcap [x \mapsto 0, y \mapsto T]$
Abstract Interpretation

Foundations
Introductory example: Expressions

A little language of expressions

Syntax
\[e ::= n \mid e \times e \]

Concrete semantics
\[C[n] = n \]
\[C[e \times e] = C[e] \times C[e] \]

Example
\[C[-3 \times 2 \times -5] = C[-3 \times 2] \times C[-5] = C[-3 \times 2] \times (-5) = ... = 30 \]
Introductory example: Abstraction

Assume that we are not interested in the value of an expression but only in its sign:

- Negative: \(-\)
- Zero: \(0\)
- Positive: \(+\)

Abstract semantics

\[A[n] = \text{sign}(n) \]

\[A[e \times e] = A[e] \otimes A[e] \]

Example

\[A[-3 \times 2 \times -5] = A[-3 \times 2] \otimes A[-5] = A[-3 \times 2] \otimes (-) = ... = \]

\[= (-) \otimes (+) \otimes (-) = (+) \]
Introductory example: Soundness

- We want to express that the abstract semantics correctly describes the sign of a corresponding concrete computation.
- For this we first link each concrete value to an abstract value:

\[\beta : \mathbb{Z} \rightarrow \{ -, 0, + \} \]

\[\beta(n) = \begin{cases}
 - & \text{if } n < 0 \\
 0 & \text{if } n = 0 \\
 + & \text{if } n > 0
\end{cases} \]
Introductory example: Soundness

Conversely, we can also link abstract values to the set of concrete values they describe:

Concretization function

\[
\gamma : \{-, 0, +\} \rightarrow \mathcal{P}(\mathbb{Z})
\]

\[
\gamma(s) = \begin{cases}
\{n \mid n < 0\} & \text{if } s = - \\
\{0\} & \text{if } s = 0 \\
\{n \mid n > 0\} & \text{if } s = +
\end{cases}
\]

Soundness then describes intuitively that the concrete value of an expression is described by its abstract value:

\[
\forall e. C[e] \in \gamma(A[e])
\]
Extending the language

Syntax
\[e ::= n \mid e \ast e \mid e + e \mid -e \]

Abstract semantics
\[A[n] = \text{sign}(n) \]
\[A[-e] = \ominus A[e] \]

Observation: The abstract domain \{-,0,+\} is not closed under the interpretation of addition.
Extending the abstract domain

We have to introduce an additional abstract value:

\[\top \quad "top" \quad \text{(any value)} \]

<table>
<thead>
<tr>
<th>(\oplus)</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>(\top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(\top)</td>
<td>(\top)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>+</td>
<td>(\top)</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(\top)</td>
<td></td>
</tr>
<tr>
<td>(\top)</td>
<td></td>
<td></td>
<td>(\top)</td>
<td></td>
</tr>
</tbody>
</table>
The new abstract domain

We can extend the concretization function to the new abstract domain \{-,0,+,, ⊤, ⊥\} (add \(⊥\) for completeness):

\[\gamma(⊤) = \mathbb{Z} \quad \gamma(⊥) = \emptyset \]

We obtain the following structure when drawing the partial order induced by

\(a \leq b \text{ iff } \gamma(a) \subseteq \gamma(b) \)

How is such a structure called?

A complete lattice
Construction of complete lattices

- If we know some complete lattices, we can construct new ones by combining them.
- Such constructions become important when designing new analyses with complex analysis domains.

Example: Total function space

Let \((D_1, \sqsubseteq_1)\) be a complete lattice and let \(S\) be a set. Then \((D, \sqsubseteq)\), defined as follows, is a complete lattice:

- \(D = S \rightarrow D_1\) ("space of total functions")
- \(f \sqsubseteq f'\) iff \(\forall s \in S : f(s) \sqsubseteq_1 f'(s)\) ("point-wise ordering")
The framework of abstract interpretation

- Starting from a concrete domain \(C \), define an abstract domain \((A, \sqsubseteq)\), which must be a complete lattice
- Define a representation function \(\beta \) that maps a concrete value to its best abstract value
 \[
 \beta : C \rightarrow A
 \]
- From this we can derive the concretization function \(\gamma \)
 \[
 \gamma : A \rightarrow \wp(C)
 \]
 \[
 \gamma(a) = \{c \in C \mid \beta(c) \sqsubseteq a\}
 \]
 and abstraction function \(\alpha \) for sets of concrete values
 \[
 \alpha : \wp(C) \rightarrow A
 \]
 \[
 \alpha(C) = \bigcup \{\beta(c) \mid c \in C\}
 \]
The following properties of α and γ hold:

Monotonicity

(1) α and γ are monotone functions

Galois connection

(2) $c \subseteq \gamma(\alpha(c))$ for all $c \in \mathcal{P}(C)$

(3) $a \supseteq \alpha(\gamma(a))$ for all $a \in A$

Galois connection: This property means intuitively that the functions α and γ are "almost inverses" of each other.
Figure: Galois connection
Galois insertions

- For a Galois connection, there may be several elements of A that describe the same element in C
- As a result, A may contain elements which are irrelevant for describing C
- The concept of Galois insertion fixes this:

Monotonicity

1. α and γ are monotone functions

Galois insertion

2. $c \subseteq \gamma(\alpha(c))$ for all $c \in \mathcal{P}(C)$
3. $\alpha = \alpha(\gamma(a))$ for all $a \in A$
Figure: Galois insertion
Induced Operations

- A Galois connection can be used to **induce** the abstract operations from the concrete ones.

\[
\begin{align*}
\mathcal{P}(C) \xrightarrow{\text{op}} \mathcal{P}(C) \\
A \xrightarrow{\alpha \circ \text{op} \circ \gamma} A
\end{align*}
\]

abstract execution

concrete execution

- We can show that the induced operation \(\text{op} = \alpha \circ \text{op} \circ \gamma \) is the most precise abstract operation in this setting.

- The induced operation might not be computable. In this case we can define an upper approximation \(\text{op}^\# \), \(\text{op} \subseteq \text{op}^\# \), and use this as abstract operation.
Abstract Interpretation

Widening
To introduce the notion of widening, we have a look at range analysis, which provides for every variable an over-approximation of its integer value range.

We are left with the task of choosing a suitable abstract domain: the interval lattice suggests itself.

Interval = \{⊥\} \cup \{[x,y] | x \leq y, x \in \mathbb{Z} \cup \{\infty\}, y \in \mathbb{Z} \cup \{\infty\}\}
Consider the following program:

At program point 2, the following sequence of abstract states arises: \([x \mapsto [1,1]], [x \mapsto [1,2]], [x \mapsto [1,3]], \ldots\)

Consequence: The analysis never terminates (or, if \(n\) is statically known, converges only very slowly).
The ascending chain condition

Using an arbitrary complete lattice as abstract domain, the solution is not computable in general.

The reason for that is the fact that the value space might be unbounded, containing infinite ascending chains:

\[(l_n)_n \text{ is such that } l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \cdots,\]

but there exists no \(n\) such that \(l_n = l_{n+1} = \cdots\)

If we replace it with an abstract space that is finite (or does not possess infinite ascending chains), then the computation is guaranteed to terminate.

In general, we want an abstract domain to satisfy the ascending chain condition, i.e. each ascending chain eventually stabilises:

if \((l_n)_n\) is such that \(l_1 \sqsubseteq l_2 \sqsubseteq l_3 \sqsubseteq \cdots\),

then there exists \(n\) such that \(l_n = l_{n+1} = \cdots\)
The reason for the non-termination in the example is that the interval lattice contains infinite ascending chains.

Trick, if we cannot eliminate ascending chains: We redefine the join operator of the lattice to jump to the extremal value more quickly.

Before: $[1,1] \uplus [2,2] = [1,2]$
Now: $[1,1] \nabla [2,2] = [1,\infty]$
A widening $\nabla : D \times D \to D$ on a partially ordered set (D, \sqsubseteq) satisfies the following properties:

1. For all $x, y \in D$. $x \sqsubseteq x \nabla y$ and $y \sqsubseteq x \nabla y$
2. For all ascending chains $x_1 \sqsubseteq x_2 \sqsubseteq x_3 \sqsubseteq \cdots$ the ascending chain $y_1 = x_1 \sqsubseteq y_2 = y_1 \nabla x_2 \sqsubseteq \cdots \sqsubseteq y_{n+1} = y_n \nabla x_{n+1}$ eventually stabilizes.

- Widening is used to accelerate the convergence towards an upper approximation of the least fixed point.
Example (continued)

- Assume we have a widening operator ∇ that is defined such that $[1,1] \nabla [2,2] = [1, +\infty]$

The analysis converges quickly.
Reading

Chapter 1: Section 1.5
Chapter 4 (advanced material)