Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz
Chris Poskitt

Lecture 3: Synchronization Algorithms
Today's lecture

In this lecture you will learn about:

• the mutual exclusion problem, a common framework for evaluating solutions to the problem of exclusive resource access
• solutions to the mutual exclusion problem (Peterson's algorithm, the Bakery algorithm) and their properties
• ways of proving properties for concurrent programs
The mutual exclusion problem
Mutual exclusion

- As discussed in the last lecture, race conditions can corrupt the result of a concurrent computation if processes are not properly synchronized.
- We want to develop techniques for ensuring mutual exclusion.
- **Mutual exclusion**: a form of synchronization to avoid the simultaneous use of a shared resource.
- To identify the program parts that need attention, we introduce the notion of a critical section.
- **Critical section**: part of a program that accesses a shared resource.
The mutual exclusion problem (1)

- We assume to have n processes of the following form:

  ```
  while true loop
    entry protocol
    critical section
    exit protocol
  non-critical section
  end
  ```

- Design the entry and exit protocols to ensure:
 - **Mutual exclusion**: At any time, at most one process may be in its critical section
 - **Freedom from deadlock**: If two or more processes are trying to enter their critical sections, one of them will eventually succeed
 - **Freedom from starvation**: If a process is trying to enter its critical section, it will eventually succeed
Further important conditions:

- Processes can communicate with each other only via atomic read and write operations.
- If a process enters its critical section, it will eventually exit from it.
- A process may loop forever or terminate while being in its non-critical section.
- The memory locations accessed by the protocols may not be accessed outside of them.

while true loop
entry protocol
critical section
exit protocol
non-critical section
end
Synchronization mechanisms based on the ideas of entry- and exit-protocols are called *locks*. They can typically be implemented as a pair of functions:

```plaintext
lock
do
  entry protocol
end

unlock
do
  exit protocol
end
```
• We will use the following statement in pseudo code

 await b

which is equivalent to

 while not b loop end

• This type of waiting is called *busy waiting* or "*spinning*"
• Busy waiting is inefficient on multitasking systems
• Busy waiting makes sense if waiting times are typically so short that a context switch would be more expensive
• Therefore spin locks (locks using busy waiting) are often used in operating system kernels
Towards a solution

• The mutual exclusion problem is quite tricky: in the 1960's many incorrect solutions were published
• We will work along a series of failing attempts until establishing a solution
• We will start with trying to find a solution for only two processes
Solution attempt I

- **First idea**: use two variables `enter1` and `enter2`; if `enter1` is true, it means that process P_i intends to enter the critical section

```
enter1 := false
enter2 := false

while true loop
    await not enter2
    enter1 := true
    critical section
    enter1 := false
    non-critical section
end

while true loop
    await not enter1
    enter2 := true
    critical section
    enter2 := false
    non-critical section
end
```
Solution attempt I is incorrect

- The solution attempt fails to ensure mutual exclusion
- The two processes can end up in their critical sections at the same time, as demonstrated by the following execution sequence

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>1</td>
<td>await not enter1</td>
</tr>
<tr>
<td>P1</td>
<td>1</td>
<td>await not enter2</td>
</tr>
<tr>
<td>P1</td>
<td>2</td>
<td>enter1 := true</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>enter2 := true</td>
</tr>
<tr>
<td>P2</td>
<td>3</td>
<td>critical section</td>
</tr>
<tr>
<td>P1</td>
<td>3</td>
<td>critical section</td>
</tr>
</tbody>
</table>
Solution attempt II

• When analyzing the failure, we see that we set the variable `enter1` only after the `await` statement, which is guarding the critical section

• **Second idea**: switch these statements around

enter1 := false
enter2 := false

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>while true loop</td>
<td>while true loop</td>
</tr>
<tr>
<td>1</td>
<td>enter1 := true</td>
<td>enter2 := true</td>
</tr>
<tr>
<td>2</td>
<td>await not enter2</td>
<td>await not enter1</td>
</tr>
<tr>
<td>3</td>
<td>critical section</td>
<td>critical section</td>
</tr>
<tr>
<td>4</td>
<td>enter1 := false</td>
<td>enter2 := false</td>
</tr>
<tr>
<td>5</td>
<td>non-critical section</td>
<td>non-critical section</td>
</tr>
<tr>
<td></td>
<td>end</td>
<td>end</td>
</tr>
</tbody>
</table>
Solution attempt II is incorrect

- The solution provides mutual exclusion
- However, the processes can deadlock:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>enter1 := true</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td>1</td>
<td>enter2 := true</td>
</tr>
<tr>
<td>P2</td>
<td>2</td>
<td>await not enter1</td>
</tr>
<tr>
<td>P1</td>
<td>2</td>
<td>await not enter2</td>
</tr>
</tbody>
</table>
Solution attempt III

• **Third idea:** let's try something new, namely a single variable `turn` that has value i if it's P_i's turn to enter the critical section

<table>
<thead>
<tr>
<th>turn := 1 or turn := 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
</tr>
<tr>
<td>while true loop</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>await turn = 1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>critical section</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>turn := 2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>non-critical section</td>
</tr>
<tr>
<td>end</td>
</tr>
</tbody>
</table>
Proving correctness of solution attempt III

- Solution attempt III looks good to us, let's try to prove it correct
- Draw the related transition system; states are labeled with triples (i, j, k): program pointer values $P_1 \triangleright i$ and $P_2 \triangleright j$, and value of the variable turn = k.
Proving correctness of solution attempt III

• **Solution attempt III satisfies mutual exclusion**

Proof. Mutual exclusion expressed as LTL formula:

\[G \neg(P1\triangleright 2 \land P2\triangleright 2) \]

Easy to see that this formula holds, as there are no states of the form (2, 2, k).

• **Solution attempt III is deadlock-free**

Proof. Deadlock-freedom expressed as LTL formula:

\[G ((P1\triangleright 1 \land P2\triangleright 1) \rightarrow F (P1\triangleright 2 \lor P2\triangleright 2)) \]

We have to examine the states (1, 1, 1) and (1, 1, 2); in both cases, one of the processes is enabled to enter its critical section.
Another setback

• Let's check starvation-freedom
• Expressed as LTL formula: for i = 1, 2
 \[G (P_i \triangleright 1 \rightarrow F (P_i \triangleright 2)) \]
• Recall: processes may terminate in non-critical section
• A problematic case is (1, 4, 2): variable turn = 2, P1 trying to enter critical section (although not its turn), P2 in non-critical section
• If P2 terminates, turn will never be set to 1: P1 will starve
Peterson's algorithm
Peterson's algorithm (for two processes)

- Peterson's algorithm combines the ideas of solution attempts II and III
- If both processes have set their enter-flag to true, then the value of turn decides who may enter the critical section

```
enter1 := false
enter2 := false
turn := 1 or turn := 2

while true loop
  enter1 := true
  turn := 2
  await not enter2 or turn = 1
  critical section
  enter1 := false
  non-critical section
end

while true loop
  enter2 := true
  turn := 1
  await not enter1 or turn = 2
  critical section
  enter2 := false
  non-critical section
end
```
Peterson's algorithm: mutual exclusion

• **Peterson’s algorithm satisfies mutual exclusion**

Proof.

• Assume that both P1 and P2 are in their critical section and that P1 entered before P2

• When P1 entered the critical section we have enter1 = true, and P2 must thus have seen turn = 2 upon entering its critical section

• P2 could not have executed line 2 after P1 entered, as this sets turn = 1 and would have excluded P2, as P1 does not change turn while being in the critical section

• However, P2 could not have executed line 2 before P1 entered either because then P1 would have seen enter2 = true and turn = 1, although P2 should have seen turn = 2

• Contradiction
Peterson's algorithm: starvation-freedom

- *Peterson's algorithm is starvation-free*

Proof.
- Assume P1 is forced to wait in the entry protocol forever
- P2 can eventually do only one of three actions:
 1. Be in its non-critical section: then enter2 is false, thus allowing P1 to enter.
 2. Wait forever in its entry protocol: impossible because turn cannot be both 1 and 2
 3. Repeatedly cycle through its code: then P2 will set turn to 1 at some point and never change it back
Peterson's algorithm for n processes

- Up until now, we have only seen a solution to the mutual exclusion problem for two processes; the problem is however posed for n processes
- Peterson's algorithm has a direct generalization

```
enter[1] := 0; ...; enter[n] := 0
turn[1] := 0; ...; turn[n - 1] := 0

for j = 1 to n - 1 do
    enter[i] := j
    turn[j] := i
    await (for all k != i : enter[k] < j) or turn[j] != i
end

critical section

for j = 1 to n - 1 do
    enter[i] := 0
    non-critical section
```
Peterson's algorithm for n processes

- Every process has to go through $n - 1$ stages to reach the critical section: variable j indicates the stage
- $\text{enter}[i]$: stage the process P_i is currently in
- $\text{turn}[j]$: which process entered stage j last
- Waiting: P_i waits if there are still processes at higher stages, or if there are processes at the same stage unless P_i is no longer the last process to have entered this stage
- Idea for mutual exclusion proof:
 at most $n - j$ processes can have passed stage j =>
 at most $n - (n - 1) = 1$ processes can be in the critical section
The Bakery algorithm
Fairness again

• Freedom from starvation still allows that processes may enter their critical sections before a certain, already waiting process is allowed access
• We study an algorithm that has very strong fairness guarantees
Bounded waiting

• The following definitions help analyze the fairness with respect to process waiting in mutual exclusion algorithms

 • **Bounded waiting**: If a process is trying to enter its critical section, then there is a bound on the number of times any other process can enter its critical section before the given process does so.

 • **r-bounded waiting**: If a process tries to enter its critical section then it will be able to enter before any other process is able to enter its critical section \(r + 1 \) times.

 • This means: bounded waiting = there exists an \(r \) such that the waiting is \(r \)-bounded

 • **First-come-first-served**: 0-bounded waiting
Relating the definitions

- starvation-freedom \Rightarrow deadlock-freedom
- starvation-freedom \nRightarrow bounded waiting
- bounded waiting \nRightarrow starvation-freedom
- bounded waiting + deadlock-freedom \Rightarrow starvation-freedom

deadlock-freedom If two or more processes are trying to enter their critical sections, one of them will eventually succeed.

starvation-freedom If a process is trying to enter its critical section, it will eventually succeed.

bounded waiting If a process is trying to enter its critical section, then there is a bound on the number of times any other process can enter its critical section before the given process does so.
Peterson's algorithm: no bounded waiting

• Assume a scenario with three competing processes

<table>
<thead>
<tr>
<th>P1</th>
<th>2</th>
<th>enter[1] := 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>2</td>
<td>enter[2] := 1</td>
</tr>
<tr>
<td>P2</td>
<td>3</td>
<td>turn[1] := 2</td>
</tr>
<tr>
<td>P3</td>
<td>2</td>
<td>enter[3] := 1</td>
</tr>
<tr>
<td>P3</td>
<td>3</td>
<td>turn[1] := 3</td>
</tr>
</tbody>
</table>

\[\text{turn[1]} \neq 2: \text{P2 can proceed} \]

<table>
<thead>
<tr>
<th>P2</th>
<th>...</th>
<th>enters + leaves critical section</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2</td>
<td>2</td>
<td>enter[2] := 1</td>
</tr>
<tr>
<td>P2</td>
<td>3</td>
<td>turn[1] := 2</td>
</tr>
</tbody>
</table>

\[\text{turn[1]} \neq 3: \text{P3 can proceed} \]

<table>
<thead>
<tr>
<th>P3</th>
<th>...</th>
<th>enters + leaves critical section</th>
</tr>
</thead>
</table>

\[\text{P3 can unblock P2 etc.} \]

• P2 and P3 can overtake P1 unboundedly often
• Still P1 is not starved as it eventually (fairness) executes turn[1] := 1 and can proceed into the critical section
The Bakery algorithm: first attempt

- **Idea:** ticket systems for customers, at any turn the customer with the lowest number will be served
- **number[i]:** ticket number drawn by a process \(P_i\)
- **Waiting:** until \(P_i\) has the lowest number currently drawn

<table>
<thead>
<tr>
<th>(P_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

- **Where is the problem?**
Problem with the first attempt

• Line 1 may not be executed atomically
• Hence two processes may get the same ticket number
• Then a deadlock can happen in line 3, as none of the processes' ticket numbers is less than the other
A suggestion for a fix

• Replace the comparison `number[i] < number[j]` by
 `(number[i], i) < (number[j], j)`

• The "less than" relation is defined in this case as

 \[(a, b) < (c, d) \text{ if } (a < c) \text{ or } ((a = c) \text{ and } (b < d))\]

• **Idea:** if two ticket numbers turn out to be the same, the process with the lower identifier gets precedence
The fix doesn't work

- Unfortunately, with the fix we no longer have mutual exclusion:
 - P1 and P2 both compute the current maximum as 0
 - P2 assigns itself ticket number 1 \((\text{number}[2] := 1)\) and proceeds into critical section
 - P1 assigns itself ticket number 1 \((\text{number}[1] := 1)\) and proceeds into critical section, because \((\text{number}[1], 1) < (\text{number}[2], 2)\)
The bakery algorithm

- Finally, we indicate with a flag if a process is currently calculating its ticket number

number[1] := 0; ...; number[n] := 0

<table>
<thead>
<tr>
<th>P_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>9</td>
</tr>
</tbody>
</table>
Two lemmas

Lemma 1. If processes P_i and P_k are in the bakery and P_i entered the bakery before P_k entered the doorway, then \(\text{number}[i] < \text{number}[k] \).

Lemma 2. If process P_i is in its critical section and process P_k is in the bakery then \(\text{(number}[i], i) < \text{(number}[k], k) \).

For P_i choosing \([k] = \text{false} \) when reading it in line 5.

If we have the situation of Lemma 1, we are finished.

If P_k had left the doorway before P_i read \(\text{number}[k] \), it was reading its current value.

Since process P_i went on into the critical section, it must have found \(\text{(number}[i], i) < \text{(number}[k], k) \).
Correctness of the bakery algorithm

• **The Bakery algorithm satisfies mutual exclusion.**

 Proof. Follows from Lemma 2.

• **The Bakery algorithm is deadlock-free.**

 Proof. Some waiting process P_i has the minimum value of $(\text{number}[i], i)$ among all the processes in the bakery. This process must eventually complete the for loop and enter the critical section.

• **The Bakery algorithm is first-come-first-served.**

 Proof. Follows from Lemmas 1 and 2.
Unbounded ticket numbers

• **Drawback of the Bakery algorithm**: values of the ticket numbers can grow unboundedly

 - Assume P1 gets ticket number 1 and proceeds to its critical section.

 - Then process P2 gets ticket number 2, lets P1 exit from its critical section and enters its own critical section.

 - As P1 tries to re-enter its critical section it draws ticket number 3.

 - In this manner two processes could alternatingly draw ticket numbers until the maximum size of an integer on the system is reached.
Space bounds for synchronization algorithms

- Size and number of shared memory locations is an important measure to compare synchronization algorithms.
- For Peterson’s algorithm, we count $2n - 1$ registers (bounded by n), and in the case of the Bakery algorithm $2n$ registers (unbounded in size).
- Large overhead: can we do better?
- One can prove in general a lower bound: mutual exclusion problem for n processes satisfying mutual exclusion and global progress needs to use n shared one-bit registers.
- The bound is tight (Lamport's one bit algorithm).
Non-atomic memory access

- The mutual exclusion problem makes the assumption that memory accesses are executed atomically
- This might not be a valid assumption on multiprocessor systems, leading to inconsistencies
- The Bakery algorithm can help here as well: each memory location is only written by a single process, hence conflicting write operations cannot occur
Other atomic primitives (1)

- Having only atomic read and write to implement locks makes efficient implementation difficult
- Where available, locks can be built from more complex atomic primitives

```plaintext
test-and-set (x, value)
    do
        temp := *x
        *x := value
        result := temp
    end
```

- Note that x in this pseudo-code is treated as a reference
Other atomic primitives (2)

• Using more powerful primitives, concise solutions to the mutual exclusion problem can be obtained:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b := false</td>
<td></td>
</tr>
<tr>
<td>(P_i)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>await not (\text{test-and-set}(b, \text{true}))</td>
</tr>
<tr>
<td>2</td>
<td>critical section</td>
</tr>
<tr>
<td>3</td>
<td>(b := \text{false})</td>
</tr>
<tr>
<td>4</td>
<td>non-critical section</td>
</tr>
</tbody>
</table>
Other atomic primitives (3)

fetch-and-add \((x, \text{value}) \)

\[
\text{do} \\
\quad \text{temp} := *x \\
\quad *x := *x + \text{value} \\
\quad \text{result} := \text{temp} \\
\text{end}
\]

compare-and-swap \((x, \text{old, new}) \)

\[
\text{do} \\
\quad \text{if } *x = \text{old then} \\
\quad \quad *x := \text{new}; \text{result} := \text{true} \\
\quad \quad \text{else} \\
\quad \quad \quad \text{result} := \text{false} \\
\quad \quad \text{end} \\
\text{end}
\]