Concepts of Concurrent Computation

Spring 2014

Lecture 5: Monitors

Bertrand Meyer

Sebastian Nanz
Chris Poskitt

Chair of e s
@So:tlvrv:re Engineering mzurICh



Last week: semaphores

® semaphores are conceptually simple but powerful tools
for solving synchronisation problems

® applications beyond mutual exclusion: k-exclusion,
barriers, condition synchronisation

but: correct usage is still far from trivial

=> must consider the whole program to determine a
semaphore’s correct use
=> multiple semaphores difficult (e.g. dining philosophers)

=> missing one down or up could introduce deadlock

2



Today: a little more abstraction

we will talk about monitors -- an approach that
brovides synchronisation in a more structured manner

pased on object-oriented principles

=> class
=> encapsulation

mutual exclusion handled implicitly; or “for free”

=> aims to greatly reduce the number of
programmer errors

invented by Hoare and Brinch Hansen




monitor class MONITOR NAME




-

attribute IW ( attributeZT ( attribute3

~N

—

monitor class MONITOR NAME

|/




-

attribute Iw ( attributeZT ( attribute3

~N

—

monitor class MONITOR NAME

|/




4 )

attribute IT ( attributeZ} ( attribute3

monitor class MONITOR NAME
— |/

routines executed under mutual exclusion!



Next on the agenda

. monitors and mutual exclusion

. condition synchronisation

. signalling disciplines

. applications of monitors



Monitors

® a monitor class is a class that fulfills the following
conditions:

=> all its attributes are declared private
=> its routines execute with mutual exclusion

® a monitor is an object instantiating a monitor class



Monitors

® 3 monitor class is a cl

o attributes correspond to shared variables
conditions:

=> all its attributes are declared private
=> its routines execute with mutual exclusion

® a monitor is an object i( . . . . )
J routine bodies correspond to critical sections




Monitor class notation

monitor class MONITOR NAME
feature

—- attribute declarations
Cll . WPEI

—— routine declarations
r, (argy, ..., arg,) do ... end

invariant
-- mohitor invariant
end



Solution to the mutual exclusion problem

monitor class CS
feature
x_1:TYPE; ... x_m: TYPE, --shared data
critical_1
do
critical section,
end

critical_n
do
critical section,
end
end



Solution to the mutual exclusion problem

monitor class CS

feature
x_1:TYPE; ... x_m: TYPE, --shared data
critical_1
do -
critical section, while true loop
end cs.critical i
non-critical section
L end
critical_n
do
critical section, for each process
end

end



Ensuring mutual exclusion in monitors

® the requirement that at most one routine is active
inside a monitor at any time is ensured by the
implementation of monitors

=> not burdened on the programmer!

® can do so using strong semaphores

=> entry : SEMAPHORE

intuition: entry is used as the monitor’s lock



Ensuring mutual exclusion in monitors

® entry is initialised to | E B

® monitor routines must acquire the semaphore before
executing their bodies

r (argy, ..., arg,)
do

entry.down

body,

entry.up
end

® the FIFO process queue entry.blocked acts as the entry
queue of the monitor



Next on the agenda

. monitors and mutual exclusion J

. condition synchronisation
. signalling disciplines

. applications of monitors



Condition variables

monitors also support condition synchronisation
through so-called condition variables

their semantics differs to those of semaphores for
condition synchronisation

=> deeply intertwined with the monitor concept

intention: separating the concerns of mutual exclusion
and condition synchronisation

=> make programs easier to read



p
"Programs must not be regarded

as code for computers, but as
literature for humans”

N. Wirth, 2014



Condition variables

® a condition variable consists of a queue blocked and
three atomic operations:

=> wait

=> signal

=> is_empty

® operations wait and signal can only be called from the
body of a monitor routine

19



Condition variables

® a condition variable consists of a queue blocked and
three atomic operations:

| releases the lock on the monitor, blocks the
=> wait executing thread and appends it to blocked

=> signal

=> is_empty

® operations wait and signal can only be called from the
body of a monitor routine

20



Condition variables

® a condition variable consists of a queue blocked and
three atomic operations:

| releases the lock on the monitor, blocks the
=> wait executing thread and appends it to blocked
-
=> signal <= if blocked is empty, then no effect;
otherwise it unblocks a thread

=> Is_empty ' side effects possible, depending
@ \ on signdlling discipline

® operations wait and signal can only be called from the
body of a monitor routine

21



Condition variables

® a condition variable consists of a queue blocked and
three atomic operations:

| releases the lock on the monitor, blocks the
=> wait executing thread and appends it to blocked

-
=> signal —

if blocked is empty, then no effect;
otherwise it unblocks a thread

=> is_empty

returns true if blocked is
empty; false otherwise

® operations wait and signal can only be called from the
body of a monitor routine

22



Semaphores vs. monitors

down wait
[only blocks if count = OJ [alwa,ys bIocksJ
up signal
i always has ) " no effect if no
an effect blocked process

23



Sleeping barber problem

waiting room with n chairs




Sleeping barber problem

barber’s chair N . .
waiting room with n chairs

%




Sleeping barber problem

barber’s chair N . .
waiting room with n chairs

%

® the barber and customers abide by the following rules:

=> if there are no customers in the waiting room, then the
barber goes to sleep

=> if a customer enters the shop and finds the barber sleeping,
they wake him up and get a haircut

=> f the barber is busy but there are free chairs in the waiting room,
then the customer sits in a chair and waits to be called by the barber

=> if all chairs are occupied, then the customer leaves the shop




Sleeping barber problem

challenge is to find a starvation-free algorithm that
observes the rules

motivation: client-server relationships between operating
system processes

generalisation of barriers (as discussed last week)

=> two parties must arrive before they can proceed
=> but the second party is not predetermined...
=> ...could be any customer!

27



Sleeping barber problem

monitor class SLEEPING_BARBER
feature
num_free_chairs : INTEGER

barber_available : CONDITION_VARIABLE

customer_available : CONDITION_VARIABLE

get_haircut
do
if num_free_chairs > O then

num_free_ chairs :=
num_free_chairs - 1

customer_available.signal
barber _available.wait
end
end
-- get a haircut

end

28

do_haircut

do
while num_free_chairs = ndo
customer_available.wait
end
barber_available.signal

num_free_ chairs :=
num_free_chairs + 1

end
-- do a haircut



Sleeping barber problem

monitor class SLEEPING_BARBER
feature
num_free_chairs : INTEGER -
barber_available : CONDITION_VARIABLE |-- express that barber is available
customer_available : CONDITION_VARIABLE]| — express that customer is waiting

29



Sleeping barber problem

monitor class SLEEPING_BARBER
feature
num_free_chairs : INTEGER
barber_available : CONDITION_VARIABLE
customer_available : CONDITION_VARIABLE

get_haircut

do
if num_free_chairs > O then | — if no free chairs, exit without haircut
num_free_chairs := .

num_free_chairs - 1 p
customer_available.signal | — Otherwise, take a chair, signal that a

barber_available.wait customer is waiting, and block on the
condition variable barber available

end
end
-- get a haircut

30



Sleeping barber problem

monitor class SLEEPING_BARBER
feature
num_free_chairs : INTEGER
barber_available : CONDITION_VARIABLE
customer_available : CONDITION_VARIABLE

' — do_haircut called in an infinite loop ' do_haircut
do

while num_free_chairs = ndo
customer_available.wait

end

barber_available.signal

num_free_ chairs :=
num_free_chairs + 1

end
-- do a haircut

(_ block on customer_available if all n
seats are free (no customers)

— when customers waiting, signals to

waiting customer that barber is ready

end

31



Sleeping barber problem

monitor class SLEEPING_BARBER
feature
num_free_chairs : INTEGER

barber_available : CONDITION_VARIABLE

customer_available : CONDITION_VARIABLE

get_haircut
do
if num_free_chairs > O then

num_free_ chairs :=
num_free_chairs - 1

customer_available.signal
barber _available.wait
end
end
-- get a haircut

end

32

do_haircut

do
while num_free_chairs = ndo
customer_available.wait
end
barber_available.signal

num_free_ chairs :=
num_free_chairs + 1

end
-- do a haircut



Implementing condition variables

class CONDITION_ VARIABLE

feature
blocked: QUEUE
wait
do -atomic
entry.up -- release the lock on the monitor
blocked.add(P) -- P is the current process

P.state := blocked -- block process P

end
signal deferred end lbehaviour depends on signalling discpline '
is_empty: BOOLEAN

do -atomic
result := blocked.is_empty
end
end

33



Next on the agenda

. monitors and mutual exclusion /
. condition synchronisation J

. signalling disciplines

. applications of monitors

34



Signalling disciplines

a process that signals on a condition variable is still executing
inside the monitor

at most one process can execute within a monitor at any time

hence an unblocked process cannot enter the monitor
immediately

we will look at two signalling disciplines

=> signalling process continues; signalled process moved to entry
queue of the monitor
=> signalling process leaves the monitor; signalled process continues

35



Signal and continue

f entry queue of monitor ’

entry.up entry.down
<
entry.blocked
c;.Ssignal
i blocked queue of condition variable c| ’
c,.blocked
c;.wait

Monitor c,.blocked

36



Signal and continue

signal and continue signalling discipline:

=> the signalling process continues
=> the signalled process is moved to monitor’s entry queue

signal
do-atomic
if not blocked.is_empty then
Q := blocked.remove
entry.blocked.add(Q)
end
end

37



Signal and wait

f entry queue of monitor ’

entry.up y entry.down
=
entry.blocked
¢;.signal i blocked queue of condition variable c| ’
=
c,.blocked
ci.wait
Monitor ¢ blocked

38



Signal and wait

signal and wait signalling discipline:

=> the signalling process is moved to monitor’s entry queue
=> the signalled process continues (monitor’s lock is silently
passed on)

signal
do -atomic
if not blocked.is_empty then
entry.blocked.add(P) -- P is the current process
Q := blocked.remove

Q.state := ready -- unblock process Q
P.state := blocked  -- block process P
end

end

39



Signal and continue vs. signal and wait

® if a process executes a signal and wait signal to indicate
that a certain condition is now true, then this condition
will be true for the signalled process

® not so for signal and continue: other processes may
execute the monitor before the signalled process and
may possibly make the condition false

=> can only take the signal as a “hint”
=> signal and wait monitors can thus be easier to program

40



Classification of signalling disciplines

® we can classify three sets of processes:

S -- signalling processes
U -- processes unblocked on the condition

® we write X >Y to express that processes in set X have
priority over those in setY,i.e.

=> signal and continue S>U
=> signal and wait U>S

41



Other signalling disciplines

® there are variations that differ in the way that priority is
given to processes waiting due to a signal call vs.
processes waiting in the monitor’s entry queue

S -- signalling processes
U -- processes unblocked on the condition
B -- blocked processes on the monitor’s entry queue

® we express these other disciplines concisely:

=> signal and continue S>U=B
=> urgent signal and continue S>U>B
=> signal and wait U>S5=8

=> signal and urgent wait U>S5>B

42



Remark: monitors can simulate semaphores

® of theoretical interest -- we do not lose expressivity by
using monitors instead of semaphores

® assume a signal and continue signalling discipline

monitor class STRONG SEMAPHORE
feature
count : INTEGER

count_positive : CONDITION_VARIABLE
down
do
if count > O then count := count - 1
else count_positive.wait end
end
up
do
if count_positive.is_empty then count := count + 1
else count_positive.signal end
end
end



Remark: monitors in Java

® cach object in Java has a mutex lock that can be acquired
and released with synchronized blocks

Object lock = new Object():

synchronized (lock) {
// critical section

}

® the following are equivalent:

synchronized type m(args){ type m(args) {
synchronized (this) {
// body // body

}
} }

44



Remark: monitors in Java

with synchronized methods, monitors can be emulated

condition variables are not explicitly available, but wait()
and notify() [i.e. signal] methods can be called on
synchronized objects

signal and continue signalling discipline is used

Java “monitors’ are not starvation-free; when notify() is
invoked, an arbitrary process is unblocked

45



Next on the agenda

. monitors and mutual exclusion /
. condition synchronisation /

. signalling disciplines

v

. applications of monitors

46



The readers-writers problem

® in the readers-writers problem we consider shared data
which can be accessed by two kinds of processes

=> readers: processes that may execute concurrently with
other readers, but must exclude writers

=> writers: processes that must exclude both readers and
other writers

® relevant for databases, shared files, heap structures

® solution should adhere to the access requirements and
be starvation free

47



Readers-writers: the challenge

® we cannot use monitors in the classical way, i.e.
encapsulating shared data as their attributes

=> wouldn’t permit multiple readers

® solution: use a monitor only to coordinate access

=> shared data accesses enclosed by calls to monitor routines

readers writers
rw.read_entry rw.write_entry
read access to shared data write access to shared data

rw.read_exit rw.write_exit

48



Monitor solution to readers-writers

monitor class READERS_WRITERS

feature
num_readers : INTEGER

num_writers : INTEGER

ok_to_read : CONDITION_VARIABLE
-- signal if num_writers = 0

ok_to_write : CONDITION_VARIABLE
-- signal if hum_readers = 0

invariant
num_writers = 0 or (num_writers = 1 and num_readers = 0)

end

49



Readers-writers: read methods

read_entry
do
if num_writers >0 or not ok_to_write.is_empty do
ok_to_read.wait
end
num_readers := num_readers + 1
ok_to_read.signal
end
read_exit
do
nhum_readers := num_readers - 1
if num_readers = O then
ok_to_write.signal
end
end

50



Readers-writers: read methods

read_entry preserve invariant
do

if num_writers >0 or not ok_to_write.is_empty do

ok_to_read.wait -
end gives writers priority
num_readers := num_readers + 1

ok_to_read.signal

end -
read_exit other readers can access
do

nhum_readers := num_readers - 1
if num_readers = O then
ok_to_write.signal
end
end

51



Readers-writers: read methods

read_entry

do
if num_writers >0 or not ok_to_write.is_empty do
ok_to_read.wait
end
num_readers := num_readers + 1
ok_to_read.signal
end
read_exit
do
nhum_readers := num_readers - 1
if num_readers = O then
ok_to_write.signal

end -
end a writer can now access

52




Readers-writers: write methods

write_entry
do
if num_writers > 0 or num_readers > 0 do
ok_to_write.wait
end
nhum_writers := num_writers + 1
end
write_exit
do
hum_writers := num_writers - 1
if ok_to_read.is_empty then
ok_to_write.signal
else
ok_to_read.signal
end
end

53



Readers-writers: write methods

write_entry preserve invariant
do

if num_writers > 0 or num_readers > 0 do

ok_to_write.wait
end breserve invariant
1

hum_writers := num_writers +
end
write_exit
do
hum_writers := num_writers - 1
if ok_to_read.is_empty then
ok_to_write.signal
else
ok_to_read.signal
end
end

54



Readers-writers: write methods

write_entry
do
if num_writers > 0 or num_readers > 0 do
ok_to_write.wait
end
nhum_writers := num_writers + 1
end
write_exit
do
hum_writers := num_writers - 1
if ok_to_read.is_empty then

ok_to_write.signal
else gives readers priority

ok_to_read.signal
end
end

55



Readers-writers: starvation

starvation-freedom ensured by:

=> checking on ok_to_write.is_empty in read_entry, and
=> checking on ok_to_read.is_empty in write_exit

but in certain applications may be beneficial to give either
readers or writers higher priority

=> e.g. if one wants to ensure reading with minimum delay

56



Next on the agenda

. monitors and mutual exclusion J

. condition synchronisation J
. signalling disciplines J

v

. applications of monitors

57



Assessment of monitors

positives:

=> structured approach to synchronisation
=> separation of concerns: mutual exclusion for free; condition
synchronisation via condition variables

©® negatives:
A~~~

=> performance concerns: tradeoff between programmer
support and performance

=> signalling disciplines: source of ambiguity

=> nested monitor calls: semantics of wait calls?

58



