
Concepts of Concurrent Computation
Spring 2014

Lecture 5: Monitors

Bertrand Meyer
Sebastian Nanz
Chris Poskitt

Chair of
Software Engineering

1

Last week: semaphores

• semaphores are conceptually simple but powerful tools
for solving synchronisation problems

• applications beyond mutual exclusion: k-exclusion,
barriers, condition synchronisation

• but: correct usage is still far from trivial

 => must consider the whole program to determine a
 semaphore’s correct use
 => multiple semaphores difficult (e.g. dining philosophers)
 => missing one down or up could introduce deadlock

2

!

Today: a little more abstraction

• we will talk about monitors -- an approach that
provides synchronisation in a more structured manner

• based on object-oriented principles

 => class
 => encapsulation

• mutual exclusion handled implicitly; or “for free”

 => aims to greatly reduce the number of
 programmer errors

• invented by Hoare and Brinch Hansen

3

monitor class MONITOR_NAME

monitor class MONITOR_NAME

attribute1 attribute2 attribute3

monitor class MONITOR_NAME

attribute1 attribute2 attribute3

critical_sect_1 critical_sect_2

monitor class MONITOR_NAME

attribute1 attribute2 attribute3

critical_sect_1 critical_sect_2

routines executed under mutual exclusion!

Next on the agenda

8

1. monitors and mutual exclusion

2. condition synchronisation

3. signalling disciplines

4. applications of monitors

Monitors

• a monitor class is a class that fulfills the following
conditions:

 => all its attributes are declared private
 => its routines execute with mutual exclusion

• a monitor is an object instantiating a monitor class

9

Monitors

• a monitor class is a class that fulfills the following
conditions:

 => all its attributes are declared private
 => its routines execute with mutual exclusion

• a monitor is an object instantiating a monitor class

10

attributes correspond to shared variables

routine bodies correspond to critical sections

Monitor class notation

11

6

Notation

monitor class MONITOR_NAME
 feature
 −− attribute declarations
 a1 : TYPE1

 . . .

 −− routine declarations
 r1 (arg1, ..., argk) do ... end

 . . .

 invariant
 −− monitor invariant
end

Solution to the mutual exclusion problem

12

9

Solution to the mutual exclusion problem (1)

monitor class CS
 feature
 x_1 : TYPE1 . . . x_m : TYPEm −− shared data
 critical_1
 do
 critical section1
 end

 . . .
 critical_n
 do
 critical sectionn

 end
end

Solution to the mutual exclusion problem

13

9

Solution to the mutual exclusion problem (1)

monitor class CS
 feature
 x_1 : TYPE1 . . . x_m : TYPEm −− shared data
 critical_1
 do
 critical section1
 end

 . . .
 critical_n
 do
 critical sectionn

 end
end

while true loop
 cs.critical_i
 non-critical section
end

for each process

Ensuring mutual exclusion in monitors

• the requirement that at most one routine is active
inside a monitor at any time is ensured by the
implementation of monitors

 => not burdened on the programmer!

• can do so using strong semaphores

 => entry : SEMAPHORE

• intuition: entry is used as the monitor’s lock

14

Ensuring mutual exclusion in monitors

• entry is initialised to 1

• monitor routines must acquire the semaphore before
executing their bodies

• the FIFO process queue entry.blocked acts as the entry
queue of the monitor

15

8

Ensuring mutual exclusion in monitors (2)

•  The semaphore entry is initialized to 1
•  Any monitor routine must acquire the semaphore before
executing its body:

 r (arg1, ..., argk)
 do
 entry.down
 bodyr

 entry.up
 end

•  The process queue entry.blocked of the semaphore entry
is also called the entry queue of the monitor

Next on the agenda

16

1. monitors and mutual exclusion

2. condition synchronisation

3. signalling disciplines

4. applications of monitors

Condition variables

• monitors also support condition synchronisation
through so-called condition variables

• their semantics differs to those of semaphores for
condition synchronisation

 => deeply intertwined with the monitor concept

• intention: separating the concerns of mutual exclusion
and condition synchronisation

 => make programs easier to read

17

"Programs must not be regarded
as code for computers, but as

literature for humans"

"Programs must not be regarded
as code for computers, but as

literature for humans"

N. Wirth, 2014

Condition variables

• a condition variable consists of a queue blocked and
three atomic operations:

 => wait

 => signal

 => is_empty

• operations wait and signal can only be called from the
body of a monitor routine

19

Condition variables

• a condition variable consists of a queue blocked and
three atomic operations:

 => wait

 => signal

 => is_empty

• operations wait and signal can only be called from the
body of a monitor routine

20

releases the lock on the monitor, blocks the
executing thread and appends it to blocked

Condition variables

• a condition variable consists of a queue blocked and
three atomic operations:

 => wait

 => signal

 => is_empty

• operations wait and signal can only be called from the
body of a monitor routine

21

releases the lock on the monitor, blocks the
executing thread and appends it to blocked

if blocked is empty, then no effect;
otherwise it unblocks a thread

! side effects possible, depending
on signalling discipline

Condition variables

• a condition variable consists of a queue blocked and
three atomic operations:

 => wait

 => signal

 => is_empty

• operations wait and signal can only be called from the
body of a monitor routine

22

releases the lock on the monitor, blocks the
executing thread and appends it to blocked

if blocked is empty, then no effect;
otherwise it unblocks a thread

returns true if blocked is
empty; false otherwise

Semaphores vs. monitors

23

wait

always blocks

down

only blocks if count = 0

signal

no effect if no
blocked process

up

always has
an effect

Sleeping barber problem

1 2 3 n

...

waiting room with n chairs

Sleeping barber problem

1 2 3 n

...

waiting room with n chairs
barber’s chair

Sleeping barber problem

• the barber and customers abide by the following rules:
 => if there are no customers in the waiting room, then the
 barber goes to sleep

 => if a customer enters the shop and finds the barber sleeping,
 they wake him up and get a haircut

 => if the barber is busy but there are free chairs in the waiting room,
 then the customer sits in a chair and waits to be called by the barber

 => if all chairs are occupied, then the customer leaves the shop

1 2 3 n

...

waiting room with n chairs
barber’s chair

Sleeping barber problem

27

• challenge is to find a starvation-free algorithm that
observes the rules

• motivation: client-server relationships between operating
system processes

• generalisation of barriers (as discussed last week)

 => two parties must arrive before they can proceed
 => but the second party is not predetermined...
 => ...could be any customer!

Sleeping barber problem

28
15

Monitor solution to the sleeping barber problem

monitor class SLEEPING_BARBER
 feature
 num_free_chairs : INTEGER
 barber_available : CONDITION_VARIABLE
 customer_available : CONDITION_VARIABLE

 get_haircut
 do
 if num_free_chairs > 0 then
 num_free_chairs :=

 num_free_chairs - 1
 customer_available.signal
 barber_available.wait
 end
 end
 -- get a haircut

 do_haircut
 do
 while num_free_chairs = n do
 customer_available.wait
 end
 barber_available.signal
 num_free_chairs :=

 num_free_chairs + 1
 end
 -- do a haircut
end

Sleeping barber problem

29
15

Monitor solution to the sleeping barber problem

monitor class SLEEPING_BARBER
 feature
 num_free_chairs : INTEGER
 barber_available : CONDITION_VARIABLE
 customer_available : CONDITION_VARIABLE

 get_haircut
 do
 if num_free_chairs > 0 then
 num_free_chairs :=

 num_free_chairs - 1
 customer_available.signal
 barber_available.wait
 end
 end
 -- get a haircut

 do_haircut
 do
 while num_free_chairs = n do
 customer_available.wait
 end
 barber_available.signal
 num_free_chairs :=

 num_free_chairs + 1
 end
 -- do a haircut
end

-- express that barber is available
-- express that customer is waiting

Sleeping barber problem

30
15

Monitor solution to the sleeping barber problem

monitor class SLEEPING_BARBER
 feature
 num_free_chairs : INTEGER
 barber_available : CONDITION_VARIABLE
 customer_available : CONDITION_VARIABLE

 get_haircut
 do
 if num_free_chairs > 0 then
 num_free_chairs :=

 num_free_chairs - 1
 customer_available.signal
 barber_available.wait
 end
 end
 -- get a haircut

 do_haircut
 do
 while num_free_chairs = n do
 customer_available.wait
 end
 barber_available.signal
 num_free_chairs :=

 num_free_chairs + 1
 end
 -- do a haircut
end

-- if no free chairs, exit without haircut

-- otherwise, take a chair, signal that a
 customer is waiting, and block on the
 condition variable barber_available

Sleeping barber problem

31
15

Monitor solution to the sleeping barber problem

monitor class SLEEPING_BARBER
 feature
 num_free_chairs : INTEGER
 barber_available : CONDITION_VARIABLE
 customer_available : CONDITION_VARIABLE

 get_haircut
 do
 if num_free_chairs > 0 then
 num_free_chairs :=

 num_free_chairs - 1
 customer_available.signal
 barber_available.wait
 end
 end
 -- get a haircut

 do_haircut
 do
 while num_free_chairs = n do
 customer_available.wait
 end
 barber_available.signal
 num_free_chairs :=

 num_free_chairs + 1
 end
 -- do a haircut
end

-- do_haircut called in an infinite loop

-- block on customer_available if all n
 seats are free (no customers)
-- when customers waiting, signals to
 waiting customer that barber is ready

Sleeping barber problem

32
15

Monitor solution to the sleeping barber problem

monitor class SLEEPING_BARBER
 feature
 num_free_chairs : INTEGER
 barber_available : CONDITION_VARIABLE
 customer_available : CONDITION_VARIABLE

 get_haircut
 do
 if num_free_chairs > 0 then
 num_free_chairs :=

 num_free_chairs - 1
 customer_available.signal
 barber_available.wait
 end
 end
 -- get a haircut

 do_haircut
 do
 while num_free_chairs = n do
 customer_available.wait
 end
 barber_available.signal
 num_free_chairs :=

 num_free_chairs + 1
 end
 -- do a haircut
end

Implementing condition variables

33
16

Implementation of condition variables

class CONDITION_VARIABLE
feature
 blocked: QUEUE
 wait
 do
 entry.up −− release the lock on the monitor
 blocked.add(P) −− P is the current process
 P.state := blocked −− block process P
 end
 signal deferred end −− behavior depends on signaling discipline
 is_empty: BOOLEAN
 do
 result := blocked.is_empty
 end
end

behaviour depends on signalling discpline

-atomic

-atomic

Next on the agenda

34

1. monitors and mutual exclusion

2. condition synchronisation

3. signalling disciplines

4. applications of monitors

Signalling disciplines

35

• a process that signals on a condition variable is still executing
inside the monitor

• at most one process can execute within a monitor at any time

• hence an unblocked process cannot enter the monitor
immediately

• we will look at two signalling disciplines

 => signalling process continues; signalled process moved to entry
 queue of the monitor
 => signalling process leaves the monitor; signalled process continues

Signal and continue

36
18

Signaling disciplines: Signal and Continue (1)

entry.blocked

c1.blocked

cn.blocked

. . .

entry.down entry.up

c1.signal

c1.wait

Monitor

blocked queue of condition variable c1

entry queue of monitor

Signal and continue

37

• signal and continue signalling discipline:

 => the signalling process continues
 => the signalled process is moved to monitor’s entry queue

19

Signaling disciplines: Signal and Continue (2)

•  Signal and Continue signaling discipline:
•  the signaling process continues
•  the signaled process is moved to the entry queue of

the monitor

signal
 do
 if not blocked.is_empty then
 Q := blocked.remove
 entry.blocked.add(Q)
 end
 end

-atomic

20

Signaling disciplines: Signal and Wait (1)

entry.blocked

c1.blocked

cn.blocked

. . .

entry.down entry.up

c1.signal

c1.wait

Monitor

Signal and wait

38

blocked queue of condition variable c1

entry queue of monitor

Signal and wait

39

• signal and wait signalling discipline:

 => the signalling process is moved to monitor’s entry queue
 => the signalled process continues (monitor’s lock is silently
 passed on)

21

Signaling disciplines: Signal and Wait (2)

•  Signal and Wait signaling discipline:
•  the signaler is moved to the entry queue of the

monitor
•  the signaled process continues (the monitor's lock is

silently passed on)
signal
 do
 if not blocked.is_empty then
 entry.blocked.add(P) −− P is the current process
 Q := blocked.remove
 Q.state := ready −− unblock process Q
 P.state := blocked −− block process P
 end
 end

-atomic

Signal and continue vs. signal and wait

40

• if a process executes a signal and wait signal to indicate
that a certain condition is now true, then this condition
will be true for the signalled process

• not so for signal and continue: other processes may
execute the monitor before the signalled process and
may possibly make the condition false

 => can only take the signal as a “hint”
 => signal and wait monitors can thus be easier to program

Classification of signalling disciplines

41

• we can classify three sets of processes:

 S -- signalling processes
 U -- processes unblocked on the condition

• we write X > Y to express that processes in set X have
priority over those in set Y, i.e.

 => signal and continue
 => signal and wait

S > U
U > S

Other signalling disciplines

42

• there are variations that differ in the way that priority is
given to processes waiting due to a signal call vs.
processes waiting in the monitor’s entry queue

 S -- signalling processes
 U -- processes unblocked on the condition
 B -- blocked processes on the monitor’s entry queue

• we express these other disciplines concisely:

 => signal and continue
 => urgent signal and continue
 => signal and wait
 => signal and urgent wait

S > U = B
S > U > B
U > S = B
U > S > B

Remark: monitors can simulate semaphores
• of theoretical interest -- we do not lose expressivity by

using monitors instead of semaphores

• assume a signal and continue signalling discipline

26

Monitors can simulate semaphores (2)

monitor class STRONG_SEMAPHORE
feature
 count : INTEGER
 count_positive : CONDITION_VARIABLE
 down
 do
 if count > 0 then count := count − 1
 else count_positive.wait end
 end
 up
 do
 if count_positive.is_empty then count := count + 1
 else count_positive.signal end
 end
end

Remark: monitors in Java

44

• each object in Java has a mutex lock that can be acquired
and released with synchronized blocks

• the following are equivalent:

27

Side remark: Monitors in Java (1)

•  Each object in Java has a mutex lock that can be
acquired and released within synchronized blocks:

 Object lock = new Object();

 synchronized (lock) {
 // critical section
 }

•  The following are equivalent:

synchronized type m(args) {

 // body

}

type m(args) {
 synchronized (this) {
 // body
 }
}

27

Side remark: Monitors in Java (1)

•  Each object in Java has a mutex lock that can be
acquired and released within synchronized blocks:

 Object lock = new Object();

 synchronized (lock) {
 // critical section
 }

•  The following are equivalent:

synchronized type m(args) {

 // body

}

type m(args) {
 synchronized (this) {
 // body
 }
}

Remark: monitors in Java

45

• with synchronized methods, monitors can be emulated

• condition variables are not explicitly available, but wait()
and notify() [i.e. signal] methods can be called on
synchronized objects

• signal and continue signalling discipline is used

• Java “monitors” are not starvation-free; when notify() is
invoked, an arbitrary process is unblocked

Next on the agenda

46

1. monitors and mutual exclusion

2. condition synchronisation

3. signalling disciplines

4. applications of monitors

The readers-writers problem

47

• in the readers-writers problem we consider shared data
which can be accessed by two kinds of processes

 => readers: processes that may execute concurrently with
 other readers, but must exclude writers

 => writers: processes that must exclude both readers and
 other writers

• relevant for databases, shared files, heap structures

• solution should adhere to the access requirements and
be starvation free

Readers-writers: the challenge

48

• we cannot use monitors in the classical way, i.e.
encapsulating shared data as their attributes

 => wouldn’t permit multiple readers

• solution: use a monitor only to coordinate access

 => shared data accesses enclosed by calls to monitor routines

31

Towards a solution

•  We cannot use monitors in the classical way, i.e.
encapsulating the shared data as attributes of the monitor
•  Since all monitor routines execute under mutual
exclusion, we couldn't have multiple readers
•  We use the monitor only to coordinate access; shared
data accesses are enclosed by calls to monitor routines:
Readers: rw.read_entry

 read access to shared data
 rw.read_exit

Writers: rw.write_entry

 write access to shared data
 rw.write_exit

31

Towards a solution

•  We cannot use monitors in the classical way, i.e.
encapsulating the shared data as attributes of the monitor
•  Since all monitor routines execute under mutual
exclusion, we couldn't have multiple readers
•  We use the monitor only to coordinate access; shared
data accesses are enclosed by calls to monitor routines:
Readers: rw.read_entry

 read access to shared data
 rw.read_exit

Writers: rw.write_entry

 write access to shared data
 rw.write_exit

readers writers

Monitor solution to readers-writers

49
32

Monitor solution of the readers-writers problem (1)

monitor class READERS_WRITERS
 feature
 num_readers : INTEGER
 num_writers : INTEGER
 ok_to_read : CONDITION_VARIABLE

 -- signal if num_writers = 0
 ok_to_write : CONDITION_VARIABLE

 -- signal if num_readers = 0

 . . .

 invariant
 num_writers = 0 or (num_writers = 1 and num_readers = 0)
end

Readers-writers: read methods

50
34

Monitor solution of the readers-writers problem (3)

 read_entry
 do
 if num_writers > 0 or not ok_to_write.is_empty do
 ok_to_read.wait
 end
 num_readers := num_readers + 1
 ok_to_read.signal
 end
read_exit
 do
 num_readers := num_readers - 1
 if num_readers = 0 then
 ok_to_write.signal
 end
 end

Readers-writers: read methods

51
34

Monitor solution of the readers-writers problem (3)

 read_entry
 do
 if num_writers > 0 or not ok_to_write.is_empty do
 ok_to_read.wait
 end
 num_readers := num_readers + 1
 ok_to_read.signal
 end
read_exit
 do
 num_readers := num_readers - 1
 if num_readers = 0 then
 ok_to_write.signal
 end
 end

gives writers priority

preserve invariant

other readers can access

Readers-writers: read methods

52
34

Monitor solution of the readers-writers problem (3)

 read_entry
 do
 if num_writers > 0 or not ok_to_write.is_empty do
 ok_to_read.wait
 end
 num_readers := num_readers + 1
 ok_to_read.signal
 end
read_exit
 do
 num_readers := num_readers - 1
 if num_readers = 0 then
 ok_to_write.signal
 end
 end a writer can now access

Readers-writers: write methods

53

35

Monitor solution of the readers-writers problem (4)

write_entry
 do
 if num_writers > 0 or num_readers > 0 do
 ok_to_write.wait
 end
 num_writers := num_writers + 1
 end
write_exit
 do
 num_writers := num_writers - 1
 if ok_to_read.is_empty then
 ok_to_write.signal
 else
 ok_to_read.signal
 end
 end

Readers-writers: write methods

54

35

Monitor solution of the readers-writers problem (4)

write_entry
 do
 if num_writers > 0 or num_readers > 0 do
 ok_to_write.wait
 end
 num_writers := num_writers + 1
 end
write_exit
 do
 num_writers := num_writers - 1
 if ok_to_read.is_empty then
 ok_to_write.signal
 else
 ok_to_read.signal
 end
 end

preserve invariant

preserve invariant

Readers-writers: write methods

55

35

Monitor solution of the readers-writers problem (4)

write_entry
 do
 if num_writers > 0 or num_readers > 0 do
 ok_to_write.wait
 end
 num_writers := num_writers + 1
 end
write_exit
 do
 num_writers := num_writers - 1
 if ok_to_read.is_empty then
 ok_to_write.signal
 else
 ok_to_read.signal
 end
 end

gives readers priority

Readers-writers: starvation

56

• starvation-freedom ensured by:

 => checking on ok_to_write.is_empty in read_entry; and
 => checking on ok_to_read.is_empty in write_exit

• but in certain applications may be beneficial to give either
readers or writers higher priority

 => e.g. if one wants to ensure reading with minimum delay

Next on the agenda

57

1. monitors and mutual exclusion

2. condition synchronisation

3. signalling disciplines

4. applications of monitors

Assessment of monitors

58

• positives:

 => structured approach to synchronisation
 => separation of concerns: mutual exclusion for free; condition
 synchronisation via condition variables

• negatives:

 => performance concerns: tradeoff between programmer
 support and performance
 => signalling disciplines: source of ambiguity
 => nested monitor calls: semantics of wait calls?

