
Chair of Software Engineering

Concepts of Concurrent Computation

Bertrand Meyer
Sebastian Nanz

Chris Poskitt	

Lecture 6: an overview of SCOOP

2

The issue that SCOOP addresses

Can we bring concurrent programming
to the same level

of abstraction and convenience
as sequential programming?

3

Then and now

Sequential programming:

Used to be messy

Still hard but key
improvements:

Ø  Structured programming
Ø  Data abstraction &

object technology
Ø  Design by Contract
Ø  Genericity, multiple

inheritance
Ø  Architectural techniques

Concurrent programming:

Used to be messy

Example: threading models in
most popular approaches

Development level: sixties/
seventies

Only understandable through
operational reasoning

Still messy

4

Previous advances in programming
“Structured

programming”
“Object

technology”
Use higher-level abstractions ü ü
Helps avoid bugs ü ü
Transfers tasks to implementation ü ü
Lets you do stuff you couldn’t before NO ü

Has well-understood math basis ü ü
Doesn’t require understanding that basis ü ü

Removes restrictions NO ü
Adds restrictions ü ü

Permits less operational reasoning ü ü

5

The chasm

Theoretical models, process calculi (see forthcoming
lectures)
Elegant theoretical basis, but

Ø  Remote from the ordinary practice of programming
Ø Handle concurrency aspects only

Practice of concurrent & multithreaded programming
Ø  Low-level, e.g. threads, semaphores
Ø  Poorly connected with rest of programming model (O-

O structure of modern programs)

6

SCOOP background

Simple Concurrent Object-Oriented Programming

First version described in CACM article (1993) and
chapter 32 of Object-Oriented Software Construction,
2nd edition, 1997

Prototype implementation at ETH (2005-2008)
Recent production implementation at Eiffel Software, part
of EiffelStudio

Recent descriptions: Piotr Nienaltowski’s 2007 ETH PhD
dissertation; Morandi, Nanz, Meyer (2011)

The design of SCOOP (and this presentation)

To achieve the preceding goals, SCOOP makes a number of
restrictions on the concurrent programming model

This presentation explains and justifies these restrictions
one after the other

The goal is not to limit programmers but to enable them to
reason about the programs

7

The design of SCOOP

SCOOP intends to make concurrent programming as
predictable as sequential programming

A key criterion is “reasonability” (not a real word!): the
programmer’s ability to reason about the execution of
programs based only on their text

Ø As in sequential O-O programming, with contracts etc.

SCOOP is not a complete rework of basic programming
schemes, but an incremental addition to the basic O-O
scheme: one new keyword

Ø  “Concurrency Made Easy”

8

Handling concurrency simply

SCOOP narrows down the distinction between sequential
and concurrent programming to five key properties,
studied next:

Ø  (A) Single vs multiple “processors”
Ø  (B) Synchronous vs asynchronous calls
Ø  (C) Semantics of argument passing
Ø  (D) Semantics of resynchronization (lazy wait)
Ø  (E) Semantics of preconditions

9

10

The starting point (A): processors

To perform a computation is
Ø  To apply certain actions
Ø  To certain objects
Ø  Using certain processors

Processor

Actions Objects

Sequential: one processor
Concurrent: any number of processors

11

What makes an application concurrent?

Processor:
Thread of control supporting sequential execution of
instructions on one or more objects

Can be implemented as:

Ø  Computer CPU
Ø  Process
Ø Thread
Ø AppDomain (.NET) …

The SCOOP model is abstract and does not specify the
mapping to such actual computational resources

Processor

Actions Objects

12

Reasoning about objects: sequential

{INV and Prer } bodyr {INV and Postr }

{Prer’ } x.r (a) {Postr’ }

Priming represents
actual-formal

argument substitution

Only n proofs if n exported routines!

The concurrent version of this
rule will come later!

13

In a concurrent context

Only n proofs if n exported routines?

{INV and Prer } bodyr {INV and Postr }

{Prer’} x.r (a) {Postr’}

Client 1

r1

Client 2

r2

Client 3

r3

No overlapping!

14

SCOOP restriction: one handler per object

Ø One processor per object: “handler”

Ø At most one feature (operation) active on an object at
any time

Regions

The notion of handler implies a partitioning of the set of
objects:

Ø The set of objects handled by a given processor is
called a region

Ø Handler rule implies one-to-one correspondence
between processors and regions.

16

(B) The sequential view: O-O feature calls

x.r (a)

Processor

Client Supplier

previous

x.r (a)

next

r (x : A)
 do
 …
 end

17

(B) The concurrent form of call: asynchronous

Client Supplier

previous

x.r (a)

next

r (x : A)
 do
 …
 end

Client’s handler Supplier’s handler

18

The two forms of O-O call

To wait or not to wait:
Ø  If same processor, synchronous
Ø  If different processor, asynchronous

Difference must be captured by syntax:
Ø x: T

Ø x: separate T -- Potentially different processor

Fundamental semantic rule: a call x.r (a)
Ø Waits (i.e. is synchronous) for non-separate x
Ø Does not wait (is asynchronous) for separate x

Why potentially separate?

separate declaration does not specify processor: only
states that the object might be handled by a different
processor

Ø  In class A: x: separate B
Ø  In class B: y: separate A

In some execution the value of x.y might be a reference to
an object in the current region (including Current itself)

Call vs application

With asynchrony we must distinguish between feature call
and feature application

The execution

 x • r (...)

is the call, and (with x separate) will not wait (the client
just logs the call)

The execution of r happens later and is called the feature
application

20

21

Consistency rules: avoiding traitors

 nonsep : T

 sep : separate T

 nonsep := sep

 nonsep.p (a)

Traitor!

More traitor
protection through
the type system!
(next lectures)

22

Trusting what you read (“reasonability”)

remote_stack : separate STACK [T]

…

remote_stack.put (a)

… Instructions not affecting the buffer…

 y := remote_stack.item ?

23

(C) Access control policy

SCOOP requires the target of a separate call to
be a formal argument of enclosing routine:

 put (b : separate QUEUE [T]; value : T)
 -- Add value, FIFO-style, to b.
 do
 b.put (value)
 end

24

(C) Access control policy

The target of a separate call must be a formal
argument of enclosing routine:

 put (buffer : separate QUEUE [T]; value : T)
 -- Store value into buffer.
 do
 buffer.put (value)
 end

To use separate object:
 my_buffer : separate QUEUE [INTEGER]
 create my_buffer
 put (my_buffer , 10)

25

(C) Separate argument rule

The target of a separate call
must be an argument of the enclosing routine

Separate call: x.f (...) where x is separate

26

(C) Wait rule

A routine call guarantees
exclusive access to the

handlers (the processors) of all
separate arguments

a_routine (nonsep_a, nonsep_b, sep_c, sep_d, sep_e)

Exclusive access to sep_c, sep_d, sep_e within a_routine

Background for this rule: “reasonability” again

An example: from sequential to concurrent

transfer (source, target: ACCOUNT;
 amount: INTEGER)
 -- Transfer amount from source to target.
 require

 source l balance >= amount
 do

 source l withdraw (amount)
 target l deposit (amount)

 ensure
 source l balance = old source l balance – amount
 target l balance = old targetl balance + amount

 end

separate

28

Dining philosophers in SCOOP

class PHILOSOPHER inherit
 PROCESS
 rename
 setup as getup
 redefine step end

feature {BUTLER}

 step
 do
 think ; eat (left, right)

 end

 eat (l, r : separate FORK)
 -- Eat, having grabbed l and r.

 do … end
end

29

Typical traditional code

A PROCESS library class

SCOOP integrates inheritance and other O-O techniques with
concurrency, seamlessly and without conflicts (“inheritance anomaly”)
No need for built-in notion of active object: it is programmed through
a library class such as PROCESS :

 class process feature
 setup do end
 step do end
 over : BOOLEAN
 tear_down do end
 live
 do
 from setup until over loop step end
 tear_down
 end
 end
 end

30

(C) What the wait rule means

Beat enemy number one in concurrent world: atomicity
violations

Ø  Data races
Ø  Illegal interleaving of calls

Data races cannot occur in SCOOP

Ø  Why? See computational model ...

Semantics vs implementation

Older SCOOP literature (OOSC, Nienaltowski, Morandi...)
says that feature application “waits” until all the separate
arguments’ handlers are available
This is not necessary!
What matters is exclusive access: implementation does not
have to wait unless semantically necessary
The current implementation performs these optimizations

32

f (a, b, c: separate T)
 do
 something_else
 a.r
 b.s
 end

No need to wait for
a and b until here

No need to wait for c!

33

(D) Resynchronization: lazy wait

How do we resynchronize after asynchronous (separate)
call?
No explicit mechanism!

The client will wait only when it needs to:
 x.f
 x.g (a)
 y.f
 …
 value := x.some_query

Lazy wait (also known as wait by necessity)

Wait here!

34

(D) Synchrony vs asynchrony revisited

For a separate target x:

Ø  x • command (...) is asynchronous

Ø  v := x • query (...) is synchronous

35

What becomes of contracts, in particular preconditions, in
a concurrent context?

(E) Contracts

36

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then
insert it again.

36

put (b : [G] ; v : G)
 -- Store v into b.
 require
 not b.is_full
 do
 …
 ensure
 not b.is_empty

 end

BUFFER

my_queue : [T]
…

if not my_queue.is_full then

 put (my_queue, t)
end

BUFFER

put

item, remove

37

put (buf : BUFFER [INTEGER] ; v : INTEGER)

 -- Store v into buffer.
 require
 not buf.is_full
 v > 0
 do
 buf.put (v)
 ensure
 not buf.is_empty
 end

...
put (my_buffer, 10)

(E) Contracts

38

put (buf : BUFFER [INTEGER] ; v : INTEGER)

 -- Store v into buffer.
 require
 not buf.is_full
 v > 0
 do
 buf.put (v)
 ensure
 not buf.is_empty
 end

...
put (my_buffer, 10)

(E) Contracts

 Precondition becomes
wait condition

39

(E) Full synchronization rule

A call with separate arguments waits until:
Ø The corresponding objects are all available
Ø  Preconditions hold

 x.f (a) -- where a is separate

40

Which semantics applies?

put (buf : separate BUFFER [INTEGER]; i : INTEGER)
 require
 not buf.is_full
 i > 0
 do
 buf.put (i)
 end

Wait condition

Correctness
condition

my_buffer : separate BUFFER [INTEGER]
put (my_buffer, 10)

41

Generalized semantics of preconditions

The different semantics is surprising at first:
Ø  Separate: wait condition
Ø  Non-separate: correctness condition

At a high abstraction level, however, we may consider that
Ø Wait semantics always applies in principle

Ø Sequentiality is a special case of concurrency

Ø Wait semantics boils down to correctness semantics for

non-separate preconditions.
§ Smart compiler can detect some cases
§ Other cases detected at run time

42

What about postconditions?

Should we wait for
zurich.is_ready?

spawn_two_activities (loc1, loc2: separate LOCATION)
 do
 loc1.do_job
 loc2.do_job
 ensure
 loc1.is_ready
 loc2.is_ready
 end

spawn_two_activities (zurich, lausanne)
do_local_stuff
get_result (zurich)

zurich, lausanne : separate LOCATION

43

Reasoning about objects: sequential

{INV and Prer } bodyr {INV and Postr }

{Prer’ } x.r (a) {Postr’ }

Only n proofs if n exported routines!

44

Refined proof rule (partial correctness)

 {INV ∧ Prer (x)} bodyr {INV ∧ Postr (x)}

{Prer (a cont)} e.r (a) {Postr (a cont)}

Hoare-style sequential reasoning

Controlled expressions (known statically as part of the
type system) are:

Ø Attached (statically known to be non-void)
Ø Handled by processor locked in current context

SCOOP highlights

Ø Close connection to O-O modeling
Ø Natural use of O-O mechanisms such as inheritance
Ø Built-in guarantee of no data races
Ø Built-in fairness
Ø Removes many concerns from programmer
Ø Supports many different forms of concurrency
Ø Retains accepted patterns of reasoning about programs
Ø Simple to learn and use

