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The issue that SCOOP addresses 

Can we bring concurrent programming 
to the same level 

of abstraction and convenience 
as sequential programming? 
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Then and now 

Sequential programming: 
 
Used to be messy 
 
Still hard but key 
improvements: 
 

Ø  Structured programming 
Ø  Data abstraction & 

object technology 
Ø  Design by Contract 
Ø  Genericity, multiple 

inheritance 
Ø  Architectural techniques 

Concurrent programming: 
 
Used to be messy 

Example: threading models in 
most popular approaches 
 
Development level: sixties/
seventies 
 
Only understandable through 
operational reasoning 

Still messy 
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Previous advances in programming 
“Structured 

programming”  
“Object 

technology”  
Use higher-level abstractions  ü ü 
Helps avoid bugs ü ü 
Transfers tasks to implementation ü ü 
Lets you do stuff you couldn’t before NO ü 

Has well-understood math basis ü ü 
Doesn’t require understanding that basis ü ü 

Removes restrictions NO ü 
Adds restrictions ü ü 

Permits less operational reasoning ü ü 
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The chasm 

Theoretical models, process calculi (see forthcoming 
lectures) 
Elegant theoretical basis, but 

Ø  Remote from the ordinary practice of programming 
Ø Handle concurrency aspects only 
 

Practice of concurrent & multithreaded programming 
Ø  Low-level, e.g. threads, semaphores 
Ø  Poorly connected with rest of programming model (O-

O structure of modern programs) 
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SCOOP background 

Simple Concurrent Object-Oriented Programming 
 

First version described in CACM article (1993) and 
chapter 32 of Object-Oriented Software Construction, 
2nd edition, 1997 
 

Prototype implementation at ETH (2005-2008) 
Recent production implementation at Eiffel Software, part 
of EiffelStudio 
 
Recent descriptions: Piotr Nienaltowski’s 2007 ETH PhD 
dissertation; Morandi, Nanz, Meyer (2011) 



The design of SCOOP (and this presentation) 

To achieve the preceding goals, SCOOP makes a number of 
restrictions on the concurrent programming model 
 
This presentation explains and justifies these restrictions 
one after the other 
 
The goal is not to limit programmers but to enable them to 
reason about the programs 
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The design of SCOOP  

SCOOP intends to make concurrent programming as 
predictable as sequential programming 
 
A key criterion is “reasonability” (not a real word!): the 
programmer’s ability to reason about the execution of 
programs based only on their text 

Ø As in sequential O-O programming, with contracts etc. 
 
SCOOP is not a complete rework of basic programming 
schemes, but an incremental addition to the basic O-O 
scheme: one new keyword 

Ø  “Concurrency Made Easy” 
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Handling concurrency simply 

SCOOP narrows down the distinction between sequential 
and concurrent programming to five key properties, 
studied next: 
 

Ø  (A) Single vs multiple “processors” 
Ø  (B) Synchronous vs asynchronous calls 
Ø  (C) Semantics of argument passing 
Ø  (D) Semantics of resynchronization (lazy wait) 
Ø  (E) Semantics of preconditions 
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The starting point (A): processors 

To perform a computation is 
Ø  To apply certain actions 
Ø  To certain objects 
Ø  Using certain processors 

Processor 

Actions Objects 

Sequential: one processor 
Concurrent: any number of processors 
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What makes an application concurrent? 

Processor: 
Thread of control supporting sequential execution of 
instructions on one or more objects  
 
Can be implemented as: 

Ø  Computer CPU 
Ø  Process 
Ø Thread 
Ø AppDomain (.NET) … 

The SCOOP model is abstract and does not specify the 
mapping to such actual computational resources 

Processor 

Actions Objects 
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Reasoning about objects: sequential 

 
 
 

{INV and Prer }    bodyr    {INV and Postr } 
___________________________________ 

{Prer’ }   x.r (a)    {Postr’ } 
 
 

Priming represents 
actual-formal 

argument substitution 

Only n proofs if n exported routines! 

The concurrent version of this 
rule will come later! 
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In a concurrent context 

Only n proofs if n exported routines? 
 
 
 
 
 
 
 
 

{INV and Prer }    bodyr    {INV and Postr } 
___________________________________ 

{Prer’}   x.r (a)    {Postr’} 

Client 1 

r1 

Client 2 

r2 

Client 3 

r3 

No overlapping! 



14 

SCOOP restriction: one handler per object 

Ø One processor per object: “handler” 

Ø At most one feature (operation) active on an object at 
any time 



Regions 

The notion of handler implies a partitioning of the set of 
objects: 

Ø The set of objects handled by a given processor is 
called a region 

Ø Handler rule implies one-to-one correspondence 
between processors and regions. 
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(B) The sequential view: O-O feature calls 

x.r (a) 

Processor 

Client Supplier 

previous 

x.r (a) 
 
next 

r (x : A) 
 do 
  … 
 end 
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(B) The concurrent form of call: asynchronous 

Client Supplier 

previous 

x.r (a) 
 
next 

r (x : A) 
 do 
  … 
 end 

Client’s handler Supplier’s handler 
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The two forms of O-O call 

To wait or not to wait: 
Ø  If same processor, synchronous 
Ø  If different processor, asynchronous 

Difference must be captured by syntax: 
Ø x: T 

Ø x: separate T   -- Potentially different processor 

Fundamental semantic rule:  a call x.r (a) 
Ø Waits (i.e. is synchronous) for non-separate x 
Ø Does not wait  (is asynchronous) for separate x 

 



Why potentially separate? 

separate declaration does not specify processor: only 
states that the object might be handled by a different 
processor 
 
 
 
 
 

Ø  In class A:   x: separate B 
Ø  In class B:   y: separate A 

In some execution the value of x.y might be a reference to 
an object in the current region (including Current itself) 



Call vs application 

With asynchrony we must distinguish between feature call 
and feature application 
 
The execution 
 

 x • r (...) 
 
is the call, and (with x separate) will not wait (the client 
just logs the call) 
 
The execution of r happens later and is called the feature 
application 
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Consistency rules: avoiding traitors 

 
 

 nonsep : T 
 

 sep : separate T 
 

 nonsep := sep 

 nonsep.p (a) 
 
 

Traitor! 

More traitor 
protection through 
the type system! 
(next lectures) 
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Trusting what you read (“reasonability”)  

 
remote_stack : separate STACK [T ] 
 
… 
 
remote_stack.put (a) 
 
… Instructions not affecting the buffer… 
 
 y := remote_stack.item ? 
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(C) Access control policy 

SCOOP requires the target of a separate call to 
be a formal argument of enclosing routine: 
 
 

  put (b : separate QUEUE [T ]; value : T )  
             -- Add value, FIFO-style, to b. 
          do 
   b.put (value) 
          end 
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(C) Access control policy 

The target of a separate call must be a formal 
argument of enclosing routine: 

 put (buffer : separate QUEUE [T ]; value : T)  
              -- Store value into buffer. 
         do 
    buffer.put (value) 
         end 

 

To use separate object: 
 my_buffer : separate QUEUE [INTEGER ] 
 create my_buffer 
 put (my_buffer , 10)  
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(C) Separate argument rule 

The target of a separate call 
must be an argument of the enclosing routine 

Separate call: x.f (...) where x is separate 
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(C) Wait rule 

A routine call guarantees 
exclusive access to the 

handlers (the processors) of all 
separate arguments 

a_routine (nonsep_a, nonsep_b,  sep_c, sep_d, sep_e ) 
 
Exclusive access to sep_c, sep_d, sep_e  within a_routine  

Background for this rule: “reasonability” again 



An example: from sequential to concurrent 

transfer (source, target:                      ACCOUNT; 
   amount: INTEGER) 
  -- Transfer amount from source to target. 
 require 

   source l balance >= amount  
 do 

  source l withdraw  (amount) 
  target l deposit     (amount) 

 ensure 
  source l balance = old source l balance – amount 
  target l balance = old targetl balance + amount 

 end 
 

separate 
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Dining philosophers in SCOOP 

class PHILOSOPHER inherit 
 PROCESS 
  rename 
          setup as getup 
  redefine step end 

 
feature {BUTLER} 

 step  
  do 
            think ;   eat (left, right) 

           end   
 

 eat (l, r : separate FORK)  
                -- Eat, having grabbed l and r. 

           do … end  
end 
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Typical traditional code 



A PROCESS library class 

SCOOP integrates inheritance and other O-O techniques with 
concurrency, seamlessly and without conflicts (“inheritance anomaly”) 
No need for built-in notion of active object: it is programmed through 
a library class such as PROCESS : 

 class process feature 
  setup do end 
  step do end 
  over :  BOOLEAN 
  tear_down do end 
  live 
   do 
    from setup until over loop step end 
    tear_down 
   end 
  end 
 end 
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(C) What the wait rule means 

Beat enemy number one in concurrent world: atomicity 
violations 

Ø  Data races 
Ø  Illegal interleaving of calls 

 
Data races cannot occur in SCOOP 

Ø  Why? See computational model ... 



Semantics vs implementation 

Older SCOOP literature (OOSC, Nienaltowski, Morandi...) 
says that feature application “waits” until all the separate 
arguments’ handlers are available 
This is not necessary! 
What matters is exclusive access: implementation does not 
have to wait unless semantically necessary 
The current implementation performs these optimizations 
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f (a, b, c: separate T) 
 do 
  something_else 
  a.r 
  b.s 
 end 

No need to wait for 
a and b until here 

No need to wait for c! 
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(D) Resynchronization: lazy wait 

How do we resynchronize after asynchronous (separate) 
call? 
No explicit mechanism! 
 

The client will wait only when it needs to: 
 x.f 
 x.g (a) 
 y.f 
 … 
 value := x.some_query 

 
 

Lazy wait (also known as wait by necessity) 
 

Wait here! 
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(D) Synchrony vs asynchrony revisited 

For a separate target x: 
 

Ø  x • command (...) is asynchronous 

Ø  v := x • query (...) is synchronous 
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What becomes of contracts, in particular preconditions, in 
a concurrent context? 

(E) Contracts 
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The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then 
insert it again.
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put (b :                [G ] ; v : G ) 
  -- Store v into b. 
 require 
  not b.is_full 
 do 
  … 
 ensure 
  not b.is_empty 

  end 

BUFFER   

my_queue :               [T ] 
…  

if not my_queue.is_full then 
 
 

 put (my_queue, t ) 
end 

BUFFER   

put 

item, remove 



37 

 
put (buf : BUFFER [INTEGER ] ; v : INTEGER)  

  -- Store v into buffer. 
 require 
  not buf.is_full 
  v > 0 
 do 
  buf.put (v) 
 ensure 
  not buf.is_empty 
 end 

 
... 
put (my_buffer, 10 ) 
 
 
 

(E) Contracts 
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put (buf : BUFFER [INTEGER ] ; v : INTEGER)  

  -- Store v into buffer. 
 require 
  not buf.is_full 
  v > 0 
 do 
  buf.put (v) 
 ensure 
  not buf.is_empty 
 end 

 
... 
put (my_buffer, 10 ) 
 
 
 

(E) Contracts 

     Precondition becomes 
wait condition 
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(E) Full synchronization rule 

A call with separate arguments waits until: 
Ø The corresponding objects are all available 
Ø  Preconditions hold 

 x.f (a)       -- where a is separate 
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Which semantics applies? 

put (buf : separate BUFFER [INTEGER]; i : INTEGER)   
   require 
  not buf.is_full 
  i > 0   
   do 
          buf.put (i) 
   end 

Wait condition 

Correctness 
condition 

my_buffer : separate BUFFER [INTEGER] 
put (my_buffer, 10) 
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Generalized semantics of preconditions 

The different semantics is surprising at first: 
Ø  Separate: wait condition 
Ø  Non-separate: correctness condition 

At a high abstraction level, however, we may consider that 
Ø Wait semantics always applies in principle 
 
Ø Sequentiality is a special case of concurrency 
 
Ø Wait semantics boils down to correctness semantics for 

non-separate preconditions.  
§ Smart compiler can detect some cases 
§ Other cases detected at run time 
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What about postconditions? 

Should we wait for 
zurich.is_ready? 

spawn_two_activities (loc1, loc2: separate LOCATION) 
 do 
  loc1.do_job 
  loc2.do_job 
 ensure 
  loc1.is_ready 
  loc2.is_ready 
 end 

spawn_two_activities (zurich, lausanne) 
do_local_stuff 
get_result (zurich) 

zurich, lausanne : separate LOCATION 



43 

Reasoning about objects: sequential 

 
 
 

{INV and Prer }    bodyr    {INV and Postr } 
___________________________________ 

{Prer’ }   x.r (a)    {Postr’ } 
 
 

Only n proofs if n exported routines! 
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Refined proof rule (partial correctness) 

  

   {INV ∧ Prer (x)} bodyr {INV ∧ Postr (x)}  

{Prer (a cont)}  e.r (a)  {Postr (a cont)}  
 
Hoare-style sequential reasoning 
 
Controlled expressions (known statically as part of the 
type system) are: 

Ø Attached (statically known to be non-void) 
Ø Handled by processor locked in current context 



SCOOP highlights 

Ø Close connection to O-O modeling 
Ø Natural use of O-O mechanisms such as inheritance 
Ø Built-in guarantee of no data races 
Ø Built-in fairness 
Ø Removes many concerns from programmer 
Ø Supports many different forms of concurrency 
Ø Retains accepted patterns of reasoning about programs 
Ø Simple to learn and use 


