Concepts of Concurrent Computation

Spring 2014
Lecture | |: Petri Nets

Bertrand Meyer

Sebastian Nanz
Chris Poskitt

Chair of e s
@So:tlvrv:re Engineering mzurICh

Petri nets

Petri nets are mathematical models for describing
systems with concurrency and resource sharing

they facilitate many automatic analyses of interest for
concurrent systems

rich, intuitive graphical notation for choice, concurrent
execution, interaction with the environment, ...

Petri nets - the origins

proposed by Carl Adam Petri in his famous
thesis Kommunikation mit Automaten (1962)

aimed for a system architecture that could be

expanded indefinitely
=> no central components
=> in particular, no central, synchronising clock
=> actions with locally confined causes/effects

original presentation omitted the graphical
representation

Next on the agenda

|. modelling concepts: cookies for everyone!
2. synchronisation problems as Petri nets
3. Petri net analyses

4. true concurrency semantics; unfoldings

Let’s design a cookie vending machine

coin slot

compartment

selecta Wil

Let’s design a cookie vending machine

o O

coin slot compartment

Let’s design a cookie vending machine

coin slot compartment

Let’s design a cookie vending machine

coin slot compartment

Terminology

.
© © 0 0 0000000000000 0000000000000 000000000000 0000000000000 000000000000 000000200000 000c00000c00000

marking (distribution of tokens)

Let’s design a cookie vending machine

coin slot compartment

Let’s design a cookie vending machine

@>a=)

coin slot compartment

p
transition t is enabled

it can occur and change the marking

Let’s design a cookie vending machine

coin slot compartment

p
transition t is enabled

it can occur and change the marking

| et’s look inside

4
cash box?

finitely many cookies?

| et’s look inside

coin slot @ signal compartment

cash box

| et’s look inside

@@

coin slot

ichal
@ SIghd compartment

cash box

| et’s look inside

Q@

coin slot

ichal
@ SIghd compartment

cash box

| et’s look inside

Q@

coin slot

ichal
@ SIghd compartment

cash box

Let’s open it up to the world

Let’s open it up to the world

compartment

cash box

Let’s open it up to the world

storage 5
Q@ ° ¢ 3 ® s
a b €
insert sondl take
coin slot @ s compartment

p

‘ e € denotes a transition that once
enabled, need not actually occur

e we assume that other enabled

transitions occur eventually

cash box

20

The ultimate cookie machine (design)

coin slot

@
0,

®
Q'Q
return coin o0

counter cash box

Insert
compartment

21

The ultimate cookie machine (design)

coin slot

O,
0,

®
Q'Q
return coin o0

counter cash box

Insert
compartment

22

The ultimate cookie machine (design)

storage ,,
b
coin slot
JOLFCN gD TGt
@ a b €
insert . take
signal

compartment

0, @

®
Q'Q
return coin o0

counter cash box

23

The ultimate cookie machine (design)

storage .,
H
coin slot
O AND e e 3
Q) a b €
insert sondl take
(D o M & compartment
"'
return coin 60

counter cash box

/.\conflict! nondeterminism!

24

The ultimate cookie machine (design)

coin slot

O,
O

®
o0
return coin PP

counter cash box

Insert
compartment

25

The ultimate cookie machine (design)

coin slot

O,
O

®
o0
return coin PP

counter cash box

Insert
compartment

26

The ultimate cookie machine (design)

storage

coin slot

@
0,

o0 -
return coin Q @ exercise: strengthen the design such
o0 : :
that the coin slot and signal places

counter cash box

Insert
compartment

store at most one token each

27

Elementary Petri nets

if we are interested in only control flow, we can use a
special case - elementary Petri nets - where all tokens
are simply black dots

assume all edges to be labelled by: “@*

henceforth, we assume all Petri nets to be elementary

28

Elementary cookie vending machine

storage

coin slot

insert take

compartment

...
return coin o0

counter cash box

29

Petri nets: definition

® an (elementary) Petri net consists of a net structure:
N=(RT,F)

with finite sets P and T of places and transitions, F an
edge relation F € (Px T) u (T x P) and an initial

marking Mo:P-> N

® transitions marked with € are cold

® markings have the form M: P -> N; each place p holds
M(p) tokens

30

Petri nets: definition

® the preset of a transition t is the set of places p

connected by edges from p to t (postset defined
analogously)

® a transition is enabled if M(p)=1 for all places p in the
preset

® an enabled transition can occur, removing a token
from each place in the preset and adding one to each
place in the postset

31

Next on the agenda

|. modelling concepts: cookies for everyone! /

2. synchronisation problems as Petri nets
3. Petri net analyses

4. true concurrency semantics; unfoldings

32

Producer-consumer problem

consume (buffer)

store (buffer,int) T~

243
Producers 46

Consumers

71
97

Buffer

33

Producer-consumer problem

wait consume

broduce wait

34

Producer-consumer problem

wait consume

< buffer space

X
buffer count

i [
broduce wait

35

Producer-consumer problem

wait consume

Q buffer space

yy
buffer count
ff @

broduce wait

36

Producer-consumer problem

wait consume

® buffer space

yy
buffer count
ff @

broduce wait

37

Producer-consumer problem

wait consume

é buffer space

A
buffer count
ff @

broduce wait

38

Producer-consumer problem

wait consume

buffer space
@
buffer count

broduce wait

39

Producer-consumer problem

wait consume

Q buffer space

yy
buffer count
ff @

broduce wait

40

Mutual exclusion

waiting | waiting

local local;

4]

Mutual exclusion

waiting | waiting

semaphore

TepodeL

local local;

42

Next on the agenda

|. modelling concepts: cookies for everyone! /
2. synchronisation problems as Petri nets J

3. Petri net analyses

4. true concurrency semantics; unfoldings

43

Modelling power vs. analysability

many properties of interest for concurrent systems can

be automatically determined for Petri nets
=> but can be very expensive in the general case

properties include:
=> k-boundedness (i.e. no place ever has more than k tokens)
=> liveness
=> reachability

44

Reachability problem

the problem to decide whether some marking M can be
derived from the initial marking

starting point: construct a reachability graph from the
initial marking

=> i.e. a transition system completely describing its behaviour
=> nodes denote markings
=> edges denote occurrences

(more sophistication is needed when reachability graphs
are not finite)

45

Reachability graph for our semaphore

wait| wait;

SEM

Tepodel

loc . loc;
express marking M as a vector:

(M(wait;) M(CR) M(loci) M(sem) M(wait2) M(CR2) M(loc2))

i.e.(0011001)

Reachability graph for our semaphore

wait| wait;

SEM

Tepodel

loc/ loc

‘e brove that (0 1 0 0 O I 0) is unreachable
* prove that M(CR|)+M(CRy)+M(sem) = |

Reachability graph for our semaphore

(0011001)

AN

(0010010) (0100001)

/ AN

(0011100) (1001001)

/

(0100100) (1000010)

N

(1001100)

48

Deciding reachability is expensive

reachability is an important analysis

decidable, but expensive in the general case
=> EXPSPACE-hard

=> reachability graph not always finite

part || of Reisig (2013) treats the problem with more
sophistication than we have

49

Next on the agenda

|. modelling concepts: cookies for everyone! /

2. synchronisation problems as Petri nets

3. Petri net analyses J

4. true concurrency semantics; unfoldings

50

The problem of interleaving semantics

® consider the following Petri net:

&—@—O
®—B—O

® its reachability graph contains 2" states

=> state explosion problem
=> due to interleaving of occurrences
=> unnecessary: ordering of occurrences here immaterial!

51

Interleaving vs. true concurrency semantics

® an interleaving semantics imposes a total ordering on
sequences of occurrences

=> completely described by a reachability graph
=> nodes denote markings; edges denote occurrences
=> state explosion!

® 23 true concurrency semantics instead models time as a
partial order

=> two or more occurrences can happen simultaneously
=> completely described by a so-called unfolding

52

Unfoldings are compact representations of
concurrency

® an unfolding of a Petri net N is a Petri net that is more
“tree like” - but represents the same behaviour

® idea:analyse the unfolding of a Petri net itself, rather
than an underlying transition system (as in the
interleaving semantics)

53

Example: an unfolding

54

Example: an unfolding

55

Example: an unfolding

56

Example: an unfolding

57

Example: an unfolding

58

Example: an unfolding

59

Example: an unfolding

60

Example: an unfolding
A

NO;

61

Constructing an unfolding

assumption: Petri nets are |-bounded
=> possible to generalise to other Petri net variants

steps to construct an unfolding N’ from a Petri net N:

(1) initialise N’ with the places in N containing tokens
in the initial marking

(2) if a reachable™ marking in N’ enables a transition
t in N, then disjointly add t to N’ and:
=> link it to the corresponding preset
=> disjointly add the postset of t

(3) iterate step 2

*checking reachability is far easier for this special net class

62

Another example
Al__ Bl __ CI

63

Another example
Al__ Bl __ CI

64

Another example

Al Bl Cl

65

Another example

Cl

B2

Cl

66

Another example

Cl

B2 Bl

Cl

67

Another example

Cl

68

Another example

Al Bl Cl

69

Another example

Al Bl Cl

70

Returning to our small example

® construct an unfolding of the following Petri net:
@©—m—0
©O—m—0

71

Returning to our small example

® construct an unfolding of the following Petri net:
@©—m—0
©O—m—0

~

the unfolding is just the Petri net itself!
=> size O(n)
=> whereas interleaving yields 2" reachable states

72

Petri net analysis using unfoldings

suppose we want to know if some transition t in a Petri
net N can occur (i.e.a liveness property)

compute an answer by exploring the unfolding of N
until either:

=> a transition labelled t is found; or

=> jt can be concluded that no such transition occurs

important to note that only a finite prefix of the
unfolding is explored
=> Esparza & Heljanko (2008) cover this
important part (that we omit)

73

Next on the agenda

|. modelling concepts: cookies for everyone!

2. synchronisation problems as Petri nets

3. Petri net analyses J
4. true concurrency semantics; unfoldings J

74

Main sources for this lecture

Understanding Petri Nets (2013)
=> by Wolfgang Reisig
=> chapters |-3

Unfoldings (2008)

=> by Javier Esparza & Keijo Heljanko
=> chapters |-3

Unfoldings

both available online (see the course webpage)

75

Summary

® Petri nets facilitate a graphical, intuitive means of
modelling concurrent and distributed systems

® automatic analyses exist for reachability,
boundedness, liveness, ... but are expensive in the
general case

® unfoldings (based on true concurrency) may give a
more compact representation of concurrency than
reachability graphs (based on interleaving)

76

