
1

Einführung in die Programmierung
Introduction to Programming

Prof. Dr. Bertrand Meyer

Exercise Session 10

2

Today

Ø  Multiple inheritance

3

Inheritance is never the only way

Given the classes

Ø  TRAIN_CAR, RESTAURANT

how would you implement a DINER?

Ø  You could have an attribute in TRAIN_CAR

train_service: SERVICE

Ø  Then have RESTAURANT inherit from SERVICE

Ø  This is flexible if the kind of service may change to
a type that is unrelated to TRAIN_CAR

Ø  Changes in TRAIN_CAR do not affect SERVICE
easily

4

Examples of multiple inheritance

Combining separate abstractions:

Ø  Restaurant, train car
Ø  Calculator, watch

Ø  Other examples?

Ø  Teacher, student
Ø  Home, vehicle

Hands-On

5

Multiple inheritance: Combining abstractions

COMPARABLE NUMERIC

STRING COMPLEX

INTEGER

REAL

<, <=,
 >, >=,
…

+, –,
*, /
…

(total order
relation)

(commutative
ring)

6

Composite figures

7

Multiple inheritance: Composite figures

A composite figure

Simple figures

8

Defining the notion of composite figure

COMPOSITE_
FIGURE

center
display
hide
rotate
move
…

count
put
remove
…

FIGURE
V_LIST

[FIGURE]

9

In the overall structure

COMPOSITE_
FIGURE

FIGURE V_LIST
[FIGURE]

OPEN_
FIGURE

CLOSED_
FIGURE

SEGMENT POLYLINE POLYGON ELLIPSE

RECTANGLE

SQUARE

CIRCLE
TRIANGLE

perimeter+

perimeter*

perimeter++

diagonal

perimeter++

perimeter++

perimeter+

10

A composite figure as a list

Cursor

item

forth

after before

11

Composite figures

class COMPOSITE_FIGURE inherit

 FIGURE

 V_LIST [FIGURE]
feature

 display
 -- Display each constituent figure in turn.
 do
 from start until after loop

 item.display
 forth
 end
 end

 ... Similarly for move, rotate etc. ...
end

Requires dynamic
binding

12

An alternative solution: the composite pattern

COMPOSITE_
FIGURE

FIGURE LIST
[FIGURE]

OPEN_
FIGURE

CLOSED_
FIGURE

SEGMENT POLYLINE POLYGON ELLIPSE

RECTANGLE

SQUARE

CIRCLE
TRIANGLE

perimeter+

perimeter*

perimeter++

diagonal

perimeter++

perimeter++

perimeter+

figure_list

13

The Java-C# solution

No multiple inheritance for classes

“Interfaces”: specification only (but no contracts)

Ø  Similar to completely deferred classes (with no
effective feature)

A class may inherit from:

Ø  At most one class
Ø  Any number of interfaces

14

Lessons from this example

Typical example of program with holes

We need the full spectrum from fully abstract (fully
deferred) to fully implemented classes

Multiple inheritance is there to help us combine
abstractions

15

Multiple inheritance: Name clashes

f

C

f A B

?

Hands-On

16

Resolving name clashes

f

rename f as A_f

C

f A B

A_f, f

Hands-On

17

Consequences of renaming

Valid or invalid?

a1 : A
b1 : B
c1 : C
...

c1.f
a1.A_f
c1.A_f
b1.f
b1.A_f

rename f as A_f

C

f A B

A_f, f

f

Hands-On

Invalid

Valid

Valid

Valid

Invalid

18

Are all name clashes bad?

A name clash must be removed unless it is:
Ø  Under repeated inheritance (i.e. not a real clash)

Ø  Between features of which at most one is effective

(i.e. others are deferred)

indirect repeated
inheritance

direct repeated
inheritance

19

Feature merging

A B C

D

f + f * f *

* Deferred
+ Effective

20

Feature merging: with different names

A B C

D

h + g * f *

* Deferred
+ Effective
 Renaming

g f h f

class
 D

inherit
 A

 rename
 g as f
 end

 B

 C
 rename

 h as f
 end

feature
 ...

end

21

Feature merging: effective features

A B C

D

f + f + f +

* Deferred
+ Effective
-- Undefine

f --
f --

22

Undefinition

deferred class
 T

inherit
 S
 undefine v end

feature

 ...

end

23

Merging through undefinition

class
 D

inherit
 A
 undefine f end

 B

 C
 undefine f end

feature
 ...

end

A B C

D

f + f + f +

f -- f --

* Deferred
+ Effective
-- Undefine

24

Merging effective features with different names

A B C

D

h + f + g +

f --

f --

class
 D

inherit
 A
 undefine f end

 B
 rename
 g as f
 undefine f
 end

 C
 rename
 h as f
 end

feature ... end

h f

g f

25

Acceptable name clashes

If inherited features have all the same names, there is no
harmful name clash if:

Ø  They all have compatible signatures
Ø  At most one of them is effective

Semantics of such a case:

Ø  Merge all features into one
Ø  If there is an effective feature, it imposes its

implementation

26

Feature merging: effective features

a1: A b1: B c1: C d1: D
a1.g b1.f c1.h d1.f

A B C

D

g+ f+ h+

g f h f
f- f-

27

Exercise: All-in-one-device

PRINTER

ALL_IN_ONE_DEVICE

Hands-On
SCANNER FAX

28

Exercise: All-in-one-device
class PRINTER
feature

 print_page -- Print a page.
 do
 print ("Printer prints a page...")
 end

 switch_on -- Switch from ‘off‘ to ‘on‘
 do
 print ("Printer switched on...")
 end

end

class FAX
feature

 send -- Send a page over the phone net.
 do
 print (“Fax sends a page...")
 end

 start -- Switch from ‘off‘ to ‘on‘
 do
 print (“Fax switched on...")
 end

end

Hands-On
class SCANNER

feature

 scan_page -- Scan a page.
 do
 print (“Scanner scans a page...")
 end

 switch_on -- Switch from ‘off‘ to ‘on‘
 do
 print (“Scanner switched on...")
 end

 send -- Send data to PC.
 do
 print (“Scanner sends data...")
 end

end

29

Exercise: All-in-one-device

PRINTER

ALL_IN_ONE_DEVICE

Hands-On
SCANNER FAX

class
 ALL_IN_ONE_DEVICE

inherit

 ...

end

How to resolve the name
clashes?

Ø  switch_on
Ø  send

30

Exercise: All-in-one-device
class ALL_IN_ONE_DEVICE

inherit

 PRINTER
 rename
 switch_on as start
 undefine
 start
 end

 SCANNER
 rename
 switch_on as start,
 send as send_data
 end

 FAX
 rename
 send as send_message
 undefine
 start
 end

feature ... end

Hands-On

31

Valid or invalid?

s: SCANNER
f: FAX
a: ALL_IN_ONE_DEVICE

Ø  a.switch_on

Ø  a.print_page

Ø  f.send_message

Ø  s.switch_on

Ø  f.send

Ø  a.send

Hands-On class ALL_IN_ONE_DEVICE

inherit

 PRINTER
 rename
 switch_on as start
 undefine
 start
 end

 SCANNER
 rename
 switch_on as start,
 send as send_data
 end

 FAX
 rename
 send as send_message
 undefine
 start
 end

feature ... end

Invalid
Valid

Invalid

Valid
Valid

Invalid

32

A special case of multiple inheritance

TEACHER STUDENT

ASSISTANT

UNIVERSITY
_MEMBER id

This is a case of repeated inheritance

?? ??

????

33

Indirect and direct repeated inheritance

A

D

B C

A

D

34

Multiple is also repeated inheritance

A typical case:

copy ++

is_equal ++

copy
is_equal

??

copy C_copy
is_equal C_is_equal

C LIST

D

ANY

35

Sharing and replication

Features such as f, not renamed along any of the
inheritance paths, will be shared.
Features such as g, inherited under different names, will be
replicated.

A

B C

D

f
g

g g_b g g_c

36

The need for select

A potential ambiguity arises because of polymorphism and
dynamic binding:

a1 : ANY
d1 : D

…

a1 := d1
a1.copy (…)

copy ++

is_equal ++

copy C_copy
is_equal C_is_equal

C LIST

D

copy

is_equal ANY

37

Removing the ambiguity

class
 D

inherit
 V_LIST [T]

 select
 copy,
 is_equal
 end

 C
 rename
 copy as C_copy,
 is_equal as C_is_equal,
 ...
 end

38

When is a name clash acceptable?

(Between n features of a class, all with the same name,
immediate or inherited.)

Ø  They must all have compatible signatures.

Ø  If more than one is effective, they must all come
from a common ancestor feature under repeated
inheritance.

