
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 1:

Introduction to robotics

Introduction to software engineering

2

After completing this laboratory course, you will understand:

 Basic software engineering principles and methods

 Most common architectures in robotics

 Coordination and synchronization methods

 How software engineering applies to robotics

and have gained experience in programming a small robotics system

Objectives

3

Practical details

Lecturers

 Prof. Dr. Bertrand Meyer

 Dr. Jiwon Shin

Assistants

 Andrey Rusakov

 Vuk Vujovic

Course page

 http://se.inf.ethz.ch/courses/2014b_fall/rpl

Forum

 https://piazza.com/class/hu3usnqvt234p5

http://se.inf.ethz.ch/courses/2013b_fall/rpl
https://piazza.com/class/hu3usnqvt234p5

4

Practical details

Schedule

 Monday, 16:15 – 18:00, WEH D 4

 Thursday, 15:15 – 17:00, WEH D 4

This is a hands-on laboratory class. You will develop software for your
own robot. Lectures and exercise sessions will be much more
interactive than in traditional courses.

Your fellow classmates are your best resources. We encourage you to
talk to each other and help each other. For online communication, use
the forum to post your questions and answer questions other have.

5

Practical details

Laboratory space

 WEH D 4 is open exclusively to you.

 In a week, you can pick up keys to the building and to the room.

 Please lock the room when you leave and close the main door when
you enter and leave. If this becomes a problem, we will have to take
the keys away from you.

Hardware

 Next Monday, you will receive a robot, a sensor, and some cables to
be used for the class.

 We ask you to deposit 50 CHF for the hardware. You will get the
money back when you return the hardware.

 We expect you to have a laptop. If you do not have one, please
contact us. In case your laptop is not powerful enough, we have a
class laptop that you can use for the demonstration.

6

Grading

The grade for this laboratory course is based entirely on the project.

Every assignment has an individual component (50%) and a group
component (50%). For the group portion, you may work in a group of 2
to 3 people.

You must submit your work at every evaluation point and participate in
the final competition to receive a grade for this class. You must pass
both individual component and group component to pass this course.

 Assignment 1 (9 Oct/16 Oct): control and obstacle avoidance

 Assignment 2 (27 Oct/3 Nov): path planning

 Assignment 3 (13 Nov/20 Nov): object recognition

 Final competition (4 Dec/15 Dec): search and rescue

7

Project grading

In-class Demonstration: 50%

 Precise evaluation criteria will be defined at the beginning of each
phase

Software Quality: 50%

 Choice of abstractions and relations

 Correctness of implementation

 Extendibility and reusability

 Comments and documentation, including ”README”

8

Course content

Control and obstacle avoidance

 ROS and Roboscoop, Modern software engineering tools
SCOOP, Robot control and obstacle avoidance, Design
patterns

Path planning

 Path planning

Object recognition

 Robot perception, Software architecture in robotics

Search and rescue

 Localization, Mapping

9

Software engineering

 Object-Oriented Software Construction, Meyer

 Design Patterns, Gamma, Helm, Johnson, Vlissides

 Pattern-Oriented Software Architecture: Volume 2, Schmidt, Stal,
Rohnert, Buschmann

Robotics

 Probabilistic Robotics, Thrun, Burgard, Fox

 Introduction to Autonomous Mobile Robots, by Siegwart, Nourbakhsh,
Scaramuzza

Programming language

 Touch of Class, Meyer

 The C++ Programming Language, Stroustrup

Recommended literature

10

Robots as automata

Robot knight (1495)
Leonardo da Vinci

Writer (1774)
Pierre Jaquet-Droz

Digesting duck (1738)
Jacques de Vaucanson

11

Robots of the 20th century

Surveillance robot

Exploration robot
Industrial robot

Entertainment robot

12

Robots of today

Service robot

Industrial robotExploration robot

Entertainment
robot

Surveillance robot

Autonomous vehicle

13

Robotics

Robot: A machine capable of carrying out a complex series of actions
automatically, especially one programmable by a computer

Robotics: The branch of technology that deals with the design,
construction, operation, and application of robots – Oxford dictionary

Components of robotics

 Perception: Vision, Touch, Range, Sound

 Actuation: Manipulation, Locomotion

 Cognition: Navigation, Recognition,

Planning, Interaction Perception

ActuationCognition

O
pe

n-
L
oo

p
C

on
tr

ol

Robotics

14

Challenges in robotics: Uncertainty!

Solved challenges

 Navigation in static environment – Clausiusstrasse

 Recognition of known objects – face, simple objects

 Manipulation of simple, rigid objects – beer fetching

Open challenges

 Navigation in dynamic environment – Bahnhofstrasse

 Scene understanding – a group of people at a party

 Manipulation of complex, deformable objects – laundry folding

 Learning over time and knowledge transfer

http://www.willowgarage.com/blog/2010/07/06/beer-me-robot
http://www.willowgarage.com/blog/2011/06/06/solving-laundry-uc-berkeley

15

Robot for the class

Differential drive

Proximity sensors

RGB + D camera

16

What people did last year

17

Introduction to software engineering

(and software architecture)

18

A definition of software engineering

Wikipedia (from SWEBOK, the Software Engineering Body of
Knowledge)

Software engineering is the application of a systematic, disciplined,
quantifiable approach to the development, operation, and maintenance
of software, and the study of these approaches; that is, the
application of engineering to software.

(Largely useless definition)

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Engineering

19

A simpler definition

“The application of engineering to software”

Engineering (Wikipedia): “the discipline, art and profession of
acquiring and applying technical, scientific, and mathematical
knowledge to design and implement materials, structures, machines,
devices, systems, and processes that safely realize a desired
objective or invention”

A simpler definition of engineering: the application of scientific
principles to the construction of artifacts

http://en.wikipedia.org/wiki/Process_(engineering)

20

For this course

The application of engineering principles and techniques, based on
mathematics, to the development and operation of possibly large
software systems satisfying defined standards of quality

21

Parnas’s view

(Cited in Ghezzi et al.)

“The multi-person construction of multiversion software”

22

“Large” software systems

What may be large: any or all of

 Source size (lines of code, LoC)

 Binary size

 Number of users

 Number of developers

 Life of the project (decades...)

 Number of changes, of versions

(Remember Parnas’s definition)

23

Process and product

Software engineering affects both:

 Software products

 The processes used to obtain and operate them

Products are not limited to code. Other examples include requirements,
design, documentation, test plans, test results, bug reports

Processes exists whether they are formalized or not

24

Software quality factors

Correctness
Robustness
Security
Ease of use
Ease of learning
Efficiency

Process

Product

Extendibility
Reusability
Portability

Immediate

Long-term

Timeliness
Cost-effectiveness
Predictability
Reproducibility
Self-improvement

Security
Robustness

Errors

Correctness

Specification

“Reliability”

Hostility

25

Software engineering today

Three cultures:

 Process

 Agile

 Object

The first two are usually seen as exclusive, but all have major
contributions to make.

26

The process culture

Emphasize:

 Plans

 Schedules

 Documents

 Requirements

 Specifications

 Order of tasks

 Commitments

Examples: Rational Unified Process, CMMI, Waterfall…

27

CMMI basic ideas

CMMI is a catalog of approved practices and goals

Basic goal: determine the maturity level of the process of an
organization

Focused on process, not technology

Emphasizes reproducibility of results

(Moving away from “heroic” successes to controlled processes)

Emphasizes measurement, based on statistical quality control techniques
pioneered by W. Edward Deming & others

Relies on assessment by external team

28

CMMI maturity levels

Process unpredictable,
poorly controlled and
reactive

Process characterized
for projects and is often
reactive

Process characterized
for the organization
and is proactive

Process measured
and controlled

Focus on process
improvement

Optimizing

Quantitatively
Managed

Defined

Performed

Managed

Optimizing

Defined

1

2

3

4

5

29

Agile

Examples: Extreme Programming (XP), Scrum

Emphasizes:

 Short iterations

 Working code; de-emphasis of plans and documents

 Testing; de-emphasis of specifications and design . “Test-Driven
Development"

 Communication: customer involvement

 Refusal to commit to both functionality and deadlines

 Specific practices, e.g. Pair Programming

30

Agile principles

Organizational

 1 Place the customer at the center

 2 Develop minimal software:

• 2.1 Produce minimal functionality

• 2.2 Produce only the product requested

• 2.3 Develop only code and tests

 3 Accept disciplined change

• 6.1 Do not change requirements during an iteration

 4 Let the team self-organize

 5 Maintain a sustainable pace

Technical

 6 Produce frequent working iterations

 7 Treat tests as a key resource:

• 7.1 Do not start any new development until all tests pass

• 7.2 Test first

 8 Express requirements through scenarios

31

Object-oriented culture

Emphasizes:

 Seamless development

 Reversibility

 Single Product Principle

 Design by Contract

32

Six task groups of software engineering

Describe

Implement

Assess

Manage

Operate

Notate

Requirements,
design specification,

documentation …

Design, programming

V&V*, esp. testing

*Validation & Verification

Plans, schedules,
communication, reviews…

Deployment, installation,

Languages for programming etc.

33

Software lifecycle models

Describe an overall distribution of the software
construction into tasks, and the ordering of these tasks

They are models in two ways:

 Provide an abstracted version of reality

 Describe an ideal scheme, not always followed in
practice

34

Lifecycle: the waterfall model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

Royce, 1970 (original article
actually presented the model to
criticize it!)

Succession of steps, with possibility
at each step to question and update
the results of the preceding step

35

A V-shaped variant

FEASIBILITY STUDY

REQUIREMENTS
ANALYSIS

GLOBAL DESIGN

DETAILED DESIGN

DISTRIBUTION

IMPLEMENTATION

UNIT
VALIDATION

SUBSYSTEM
VALIDATION

SYSTEM
VALIDATION

36

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary

• (But: merging of middle activities)

 The order is the right one.

37

Merging of middle activities

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

38

Arguments for the waterfall

(After B.W. Boehm: Software engineering economics)

 The activities are necessary

• (But: merging of middle activities)

 The order is the right one.

39

Problems with the waterfall

 Late appearance of actual code

 Lack of support for requirements
change — and more generally for
extendibility and reusability

 Lack of support for the maintenance
activity (70% of software costs?)

 Division of labor hampering
Total Quality Management

 Impedance mismatches

 Highly synchronous model

Feasibility
study

Requirements

Specification

Global
design

Detailed
design

Implemen-
tation

V & V

Distribution

40

Lifecycle: “impedance mismatches”

As Management requested it As the Project Leader defined it As Systems designed it

As Programming
developed it

As Operations installed it What the user wanted

(Pre-1970 cartoon; origin unknown)

41

A modern variant

42

The spiral model (Boehm)

Apply a waterfall-like approach to successive prototypes

Iteration 1

Iteration 2

Iteration 3

43

The Spiral model

44

“Prototyping” in software

The term is used in one of the following meanings:

 1. Experimentation:

• Requirements capture

• Try specific techniques: GUI, implementation
(“buying information”)

 2. Pilot project

 3. Incremental development

 4. Throw-away development
(Fred Brooks, The Mythical Man-Month, 1975:
“Plan to throw one away, you will anyhow”).

45

The problem with throw-away development

Software development is hard because of the need to
reconcile conflicting criteria, e.g. portability and
efficiency

A prototype typically sacrifices some of these criteria

Risk of shipping the prototype

In the 20th-anniversary edition of his book (1995), Brooks
admitted that “plan to throw one away” is bad advice

46

The agile view

Iterative development

Short iterations (“sprints”), typically 1 month

Every iteration should produce a working system

47

Seamless, incremental development

Seamless development:

 Single set of notation, tools, concepts, principles throughout
 Continuous, incremental development
 Keep model, implementation and documentation consistent

Reversibility: can go back and forth

These are in particular some of the ideas behind the Eiffel method

48

Seamless development

 Single notation, tools, concepts,
principles

 Continuous, incremental development
 Keep model, implementation and

documentation consistent
 Reversibility: go back and forth

Example classes:

PLANE, ACCOUNT,
TRANSACTION…

STATE,
COMMAND…

HASH_TABLE…

TEST_DRIVER…

TABLE…

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

49

Generalization

Prepare for reuse. For example:
 Remove built-in limits
 Remove dependencies on

specifics of project
 Improve documentation,

contracts...
 Abstract
 Extract commonalities and revamp

inheritance hierarchy

Few companies have the guts to provide
the budget for this

B

A*

Y

X

Z

A D I V G

50

Finishing a design

It seems that the sole purpose of the work
of engineers, designers, and calculators is to
polish and smooth out, lighten this seam, balance
that wing until it is no longer noticed, until it is no longer a
wing attached to a fuselage, but a form fully unfolded,
finally freed from the ore, a sort of mysteriously joined
whole, and of the same quality as that of a poem. It seems
that perfection is reached, not when there is nothing more
to add, but when there is no longer anything to remove.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

51

Finishing a design

Il semble que tout l’effort industriel de l'homme,

tous ses calculs, toutes ses nuits de veille sur

les épures, n'aboutissent […] qu'à la seule simplicité,
comme s'il fallait l’expérience de plusieurs générations
pour dégager peu à peu la courbe d'une colonne, d'une
carène, ou d'un d'avion, jusqu'à leur rendre la pureté
élémentaire de la courbe d'un sein ou d'une épaule. Il
semble que le travail des ingénieurs, […] des calculateurs du
bureau d'études ne soit ainsi, en apparence, que de polir et
d’effacer, d’alléger […] Il semble que la perfection soit
atteinte non quand il n’y a plus rien à ajouter, mais quand il
n’y a plus rien à retrancher.

(Antoine de Saint-Exupéry,
Terre des Hommes, 1937)

52

Steve Jobs, 1998

That's been one of my
mantras -- focus and
simplicity. Simple can be
harder than complex:
You have to work hard to
get your thinking clean to
make it simple. But it's
worth it in the end
because once you get there, you can move mountains.

53

Reversibility

Analysis

Design

Implemen-
tation

V&V

Generali-
zation

54

The cluster model

Cluster 1
Cluster 2A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

A

D

I

V&V

G

55

Extremes

Cluster 1

Cluster 2

A
D

I

V&V

G

A
D

I

V&V

G

A
D

I

V&V

G

A

D

I

V&V

G

“Trickle” “Clusterfall”

A

D

I

V&V

G

A

D

I

V&V

G

Cluster 1 Cluster 2

56

Dynamic rearrangement

Cluster 1
A

D

I

V&V

G

Cluster 2

A

D

I

V&V

G
A

D

I

V&V

G

Cluster 3

A

D

I

V&V

G

Cluster 4

57

Bottom-up order of cluster development

Cluster 1
A

D

I

V&V

G

A D I

V
&

V

G

Cluster 2
A

D

I

V&V

G

A D I

V
&

V

G

Cluster n
A

D

I

V&V

G

A D I

V
&

V

G

Time

Base technology

Specialized functions

Start with most
fundamental
functionalities, end with
user interface

58

Seamless development with EiffelStudio

Diagram Tool

• System diagrams can be produced automatically from
software text

• Works both ways: update diagrams or update text – other
view immediately updated

No need for separate UML tool

Metrics Tool

Profiler Tool

Documentation generation tool

...

59

Complementary approaches

Seamless development: “vertical”

Agile: horizontal

60

Lifecycle models: summary

Software development involves fundamental tasks such as
requirements, design, implementation, V&V, maintenance…

Lifecycle models determine how they will be ordered

The Waterfall is still the reference, but many variants are possible,
e.g. Spiral, Cluster

Seamless development emphasizes the fundamental unity of the
software process

