E," Ziirich

Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 4:

Introduction to concurrency & SCOOP



The SCOOP programming model

Basic operation of OO programming: x.f (...)
Can be a command or a query:

r (c: separate CONFERENCE ; p: PAPER) - Exclusive access

[r'equrr'e ] o
. c.submission_open -- Waiting
0
c.submit (p) -- Asynchronous
if c.accepted (p) then rejoice end -- Synchronous
end

r (licse), latest)

-- Exclusive access when needed



Three risks

Data race
> Incorrect concurrent access to shared data

Deadlock
> Computation cannot progress because of circular waiting

Starvation

> Execution favors certain processes over others, which
never get executed




Data race

> Thank you for calling Ecstatic Opera Company.
How can I help you?

> (Joan) I need a single seat for next Tuesday's performance
of Pigue Dame.

> Let me check... You're in luck! Just one left. Eighty dollars.
> Great. I'll go for it.
> Just a moment while I book it.

> Thanks.

> Sorry, there are no more seats available for Tuesday.



Data race: scenario

Time . .. Request or action| Answer or | Available
Active participant

step result seats
1 Theatre Available seats? |1 1
2 Jane Seats left? Yes 1
3 Joan Seats left? Yes 1
4 Joan (fast to react) | Please book! 1
5 Jane (slow to react) Please book! 1
6 Janes agent (fast to act) Try to book Success 0
7 Joan’s agent Try to book Failure 0

(slow to act)




Deadlock

(Jane)

> I'd like to change my Tuesday evening seat |
for the matinee performance. |

> Both shows are sold out, but I heard there was a
customer who wanted to change the other way around.
Matinee booking is handled by a different office, so let
me call them and make the change.

> Thanks.

> (Ten minutes later.) "The number is still busy.”




Deadlock: scenario

Time | Active participant | Request or action Answer or result
step
1 Agent 1 Matinee available for exchange? | Yes
2 Agent 2 | Evening available for exchange? | Yes
3 Agent 1 Start dialing call to agent 2
4 Agent 2 | Start dialing call to agent 1
5 Agent 1 Finish dialing Busy signal, because agent 2 is
trying to call
6 Agent 2 | Finish dialing Busy signal, because agent 1 is
trying to call
7 Agent 1 & Agent 2 | Repeat steps 3 to 6 forever as the result remains the same: busy signals




Starvation

Jane keeps calling, but agents always pick up someone
else’s call



Execution sequences

x:=0

P1 P2

1 [x:=0 1 [x:=2
2 | x:i=x+1

. Execution can give rise to this execution sequence:
Instruction executed

with Thread ID and
— line number

T

<P1 1 [x:=0 )szO
P2 |1 [x:=2 X =2
Pl |2 | x:=x+1 x=\3

R

Variable values after
execution of the
code on the line



Execution sequences

x:=0
P1 P2
1 [x:=0 1 |[x:=2
2 |xi=x+1
Possible execution sequences considering all interleavings:

P2 |1 |x:=2 X=2 Pl1 |1 |x:=0 x=0
P1 |1 |x:=0 x=0 P2 |1 |x:=2 X =2
Pl |2 |x:=x+1 |x=1 Pl |2 |x:=x+1 [x=3

Pl |1 [x:=0 x=0

Pl |2 |[x:=x+1 x=1

P2 |1 |x:=2 X=2

10



Data races (race conditions)

If processes (OS processes, threads) are completely
independent, concurrency is easy

Usually, however, threads /nterfere with each other by
accessing and modifying common resources, such as
variables and objects

> Unwanted dependency of the computation’s result on
nondeterministic interleaving is a race condition or data
race

> Such errors can stay hidden for a long time and are
difficult to find by testing

11



Dining philosophers

12



The dining philosophers problem

n philosophers are seated around a table; between each
pair there is a single fork

Each philosopher only thinks and eats

To eat, a philosopher needs both left and right forks (so
two adjacent philosophers cannot eat at the same time)

The problem: devise an algorithm enabling philosophers to
follow this scheme, without deadlock

13



Dining philosophers: solution attempt 1

Each philosopher first picks up the right fork, then the
left fork, and then starts eating; after having eaten, the
philosopher puts down the left fork, then the right one

> The philosophers can deadlock!

14



Dining philosophers: solution attempt 2

Each philosopher successively:
> Picks up right fork and the left fork at the same time
> Starts eating

> After having eaten, puts them both back down

A philosopher could starve/

15



SCOOP background

Simple Concurrent Object-Oriented Programming

First version described in CACM article (1993) and
chapter 32 of Object-Oriented Software Construction,
2nd edition, 1997

Prototype implementation at ETH (2005-2010)

Recent production implementation at Eiffel Software, part
of EiffelStudio

Recent descriptions: Piotr Nienaltowski's 2007 ETH PhD;
Morandi, Nanz, Meyer (2011)

16



.l.

Example 1: bank transfer, from sequential to concurrent

transfer (source, target: | separate | ACCOUNT;
amount: INTEGER)
-- Transfer amount, if available, from source to target.
do
if source.balance >= amount then «~——————
source.withdraw (amount)
target.deposit  (amount)

end
end Jane | Jill | Joan
transfer (Jane, Jill, 100) 180 l(c))o 8

transfer (Jane, Joan, 100)
-100 0] 100

17



Bank transfer (better version)

transfer (source, target: | Separate | ACCOUNT;
amount: INTEGER)

-- Transfer amount from source to target.
require

source.balance >= amount
do

source.withdraw (amount)

target.deposit  (amount)
ensure

source.balance = old source.balance - amount

target.balance = old target.balance + amount
end

18



Example 2: hexapod robot

Ganesh Ramanathan, Benjamin Morandi, IROS 2011

Hind legs have force sensors on feet and retraction limit switches

19



Hexapod locomotion

; — —>
[ ] (] (]
[ ] [ ] [ ]
Y Y [ ] o ® o
e e — — — 9 <«

Alternating protraction and retraction of tripod pairs
> Begin protraction only if partner legs are down

> Depress legs only if partner legs have retracted

> Begin retraction when partner legs are up

20



Hexapod coordination rules A

/Rl: Protraction can start only if partner group on ground )
R2.1: Protraction starts on completion of retraction
R2.2: Retraction starts on completion of protraction
R3: Retraction can start only when partner group raised

\R4: Protraction can end only when partner group retracted )

Diirr, Schmitz, Cruse: Behavior-
based modeling of hexapod
locomotion: linking biology &
technical application, in Arthropod
Structure & Development, 2004

21



Sequential implementation

TripodLeg lead = tripodA;
TripodLeg lag = tripodB;

while (rrue)

{
lead.Raise();
lag.Retract();

lead.Swing();
lead.Drop();

TripodLeg temp = lead,
lead = lag;
lag = temp:;

22



Multi-threaded implementation

private object m_protractionLock = new object();

private void ThreadProcWalk(object obj)
{

Tripodleg leg = obj as Tripodl.eg;

while (Thread.CurrentThread.ThreadState \=ThreadState.

AbortRequested)
1

/l Waiting for protraction lock
lock (m_protractionLock)

/' Waiting for partner leg drop
leg.Partner.DroppedEvent. WaitOne();
leg .Raise();

t
leg.Swing();

/' Waiting for partner retraction
leg.Partmer.RetractedEvent. WaitOne();
leg.Drop();

/' Waiting for partner raise
leg.Partner.RaisedEvent.WaitOne();
leg .Retract();

23



SCOOP implementation

begin_prutractiun{partner, me : separate LEG GRCUF SIGNALER)

require

my legs retracted : me.legs retracted

partner down : partner.legs down

partner_nnt_prﬂtracting : not partner.prntractinn_pending
do

io.put string (group name)

ic.put string (" : begin protraction ")

ioc.put new line

tripod.lift

me.set protraction pending (true)
end

24



Hexapod coordination rules A

/Rl: Protraction can start only if partner group on ground )
R2.1: Protraction starts on completion of retraction
R2.2: Retraction starts on completion of protraction
R3: Retraction can start only when partner group raised

\R4: Protraction can end only when partner group retracted )

Diirr, Schmitz, Cruse: Behavior-
based modeling of hexapod
locomotion: linking biology &
technical application, in Arthropod
Structure & Development, 2004

25



Example 3: dining philosophers

Listing 4.33: Variables for Tanenbaum's solution

1 state = [’thinking’] * b
2 sem - [Bemaphore(0) for i in ranga(5)]
3 mutex = Semaphora(l)

The initial value of state 1= a list of 5 copies of *thinking®. sem is a list of
5 semaphores with the mitial value 0. Here is the code:

Listing 4.34: Tanenbanm'’s sclution

1 def get_fork(i):

2 mutex.wait()

3 state[i] = *hungry’

14 test(i)

5 mutex.signal ()

& gem[i] .wait()

7

B def put_fork(i):

9 mutex.wait()

10 state[i] = ’thinking’

11 testiright(i})

12 test(left(i))

13 mutex.signal ()

14

15 def test(i):

16 if state[i] =-- ‘hungry’ and
17 state (left (i)) !=- ’eating’ and
18 state (right (i)) !'= ‘eating’:
19 state[i] = 'eating’
20 sem[i].signal()

26



Dining philosophers in SCOOP

class PHILOSOPHER feature
/ive
do

from getup until over loop y
think . |eat (left, right)

end
end

eat(|/, r: separate FORK|)
-- Eat, having grabbed /and -
do .. end

getup do ... end
over. BOOLEAN
end

27



The design of SCOOP

SCOOP intends to make concurrent programming as
predictable as sequential programming

A key criterion is "reasonability” (not a real word!): the
programmer’s ability to reason about the execution of
programs based only on their text

> As in sequential O-O programming, with contracts eftc.

SCOOQORP is not a complete rework of basic programming
schemes, but an incremental addition to the basic O-0O
scheme: one new keyword

> "Concurrency Made Easy”

28



Handling concurrency simply A

SCOOP narrows down the distinction between sequential &
concurrent programming to six properties, studied next:

> (A) Single vs multiple "processors”

> (B) Regions

> (C) Synchronous vs asynchronous calls

> (D) Semantics of argument passing

> (E) Semantics of resynchronization (lazy wait)
> (F) Semantics of preconditions

29



The starting point (A): processors

To perform a computation is
> To apply certain actions
> To certain objects
> Using certain processors

Processor

Sequential: one processor
Concurrent: any number of processors

30



What makes an application concurrent?

Processor:

Thread of control supporting sequential execution of
instructions on one or more objects
> Computer CPU

Actions Objects
> Process

- Thread
> AppDomain ((NET) ...

The SCOOP model is abstract and does not specify the
mapping to such actual computational resources

Can be implemented as:

31



Object-oriented programming

The key operation is "feature call”
x.f (args)

where x, the target of the call, denotes an object to which
the call will apply the feature f

Which processor is in charge of executing such a call?

32



(B): Regions

All calls targeting a given object will be executed by a
single processor

> The set of objects handled by a given processor is
called a region

> The processor in charge of an object is its handler

= ®  (Objects
A Region
™\ Region boundary

== Client

33



SCOOP restriction: one handler per object

> One processor per object: "handler”

> At most one feature (operation) active on an object at
any time

34



(C) The sequential view: O-O feature calls

x.r (a)
Client Supplier'
ous O
(previous A

x.r(aq) —4——>» do

\ next ; _}e"d

Processor

35



‘.l

(C) The concurrent form of call: asynchronous

Client

Supplier
; N
@r'ewous T A
x.r (a) do
\next ) \\ end J/

Client's handler Supplier's handler

36



The two forms of O-0O call

To wait or not to wait:
> If same processor, synchronous
> If different processor, asynchronous
Difference must be captured by syntax:
> X0 T

- x: separate T -- Potentially different processor

Fundamental semantic rule: a call x.r (a)

> Waits (i.e. is synchronous) for non-separate x
> Does not wait (is asynchronous) for separate x

37



Consistency rules: avoiding traitors

nonsep: T

Traitor!
sep: separate T

nonsep = sep

nonsep.p (a)

38



(D) Access control policy

Since separate calls are asynchronous there is a
real danger of confusion

Consider for example

r (remote_stack: separate STACK[ T ])
do

remote_stack.push (a)

.. Instructions not affecting the stack...

y .= remote_stack. top <<
end

39



(D) Access control policy

SCOORP requires the target of a separate call to
be a formal argument of enclosing routine:
put (s:se |STACK[T]; value: T)
-- Store value into s.
do
s.put (value)
end

To use separate object:
my_stack:. separate STACK[INTEGER]
create my_stack

put (i ' 10)

40



(D) Separate argument rule A

p
The target of a separate call
must be an argument of the enclosing routine

Separate call: x.7(...) where xis separate

41



(D) Wait rule

~

A routine call guarantees
exclusive access to the
handlers (the processors) of all
- separate arguments y

a_routine (nonsep_a, nonsep_b, sep_c, sep_d, sep_e)

Exclusive access to [S'ep_c, sep d, sep_e] within a_routine

42



An example: from sequential to concurrent

transfer (source, target: | Separate | ACCOUNT;
amount: INTEGER)
-- Transfer amount, if available, from source to target.

do
if source.balance >= amount then
source.withdraw (amount)
target.deposit  (amount)
end
end

43



Dining philosophers in SCOOP (1)

class PHILOSOPHER feature
/ive
do

from getup until over loop
think . |eat (left, right)

end
end

eat(|/, r: separate FORK|)
-- Eat, having grabbed /and -
do .. end

getup do ... end
over. BOOLEAN
end

44



(D) What the wait rule means

Beat enemy number one in concurrent world: atomicity
violations

> Data races
> Illegal interleaving of calls

Data races cannot occur in SCOOP

45



(D) Wait rule

~

A routine call guarantees
exclusive access to the
handlers (the processors) of all
- separate arguments y

a_routine (nonsep_a, nonsep_b, sep_c, sep_d, sep_e)

Exclusive access to [S'ep_c, sep d, sep_e] within a_routine

46



..l

(E) Resynchronization: lazy wait

How do we resynchronize after asynchronous (separate) call?
No explicit mechanism!

The client will wait when, and only when, it needs to:
x.f

x.g(a)
y.f

%\/\/ai’r here! |

Lazy wait (also known as wait by necessity)

value := x.some_query

47



(E) Synchrony vs asynchrony revisited

For a separate target x.
» x.command (...) is asynchronous

> v.=x.query(...) is synchronous

48



Exercise

If we do want to resynchronize explicitly, what do we do?

49



(F) Contracts

What becomes of contracts, in particular preconditions, in
a concurrent context?

50



(F) Contracts

put (b: separate QUEUE [INTEGER ] v: INTEGER)
-- Store vinto b.
require

- not b.is_Full
v>0

b.put (v)
ensure
not b./s_empty

do

end

put (my_buffer, 10)

51



(F) Contracts

put (b: BUFFER[INTEGER ] ; /. INTEGER)
-- Store /into buffer.
require
not b./is_full
/>0

do
b.put (1)
ensure

not b./s_empty

Precondition becomes
wait condition

end

puf (my_buffer, 10)

52



Bank transfer (version with contracts)

transfer (source, target: | Separate | ACCOUNT;
amount: INTEGER)

-- Transfer amount from source to target.
require

source.balance >= amount
do

source.withdraw (amount)

target.deposit  (amount)
ensure

source.balance = old source.balance - amount

target.balance = old target.balance + amount
end

53



(F) Full synchronization rule

l.l

-

\

A call with separate arguments waits until:
>The corresponding objects are all available
> Preconditions hold

~

/

"Separate call”:

x.f(a) -- where ais separate

54



Handling concurrency simply A

SCOOP narrows down the distinction between sequential &
concurrent programming to six properties, studied next:

> (A) Single vs multiple "processors”

> (B) Regions

> (C) Synchronous vs asynchronous calls

> (D) Semantics of argument passing

> (E) Semantics of resynchronization (lazy wait)
> (F) Semantics of preconditions

55



