
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 4:

Introduction to concurrency & SCOOP

2

The SCOOP programming model

Basic operation of OO programming: xf (…)

Can be a command or a query:

csubmit (p)

caccepted (p)if then rejoice end

c: CONFERENCEseparate

…

r ()

end

do
-- Asynchronous

-- Synchronous

require
csubmission_open

-- Exclusive access

r (icse , latest)

; p: PAPER

-- Exclusive access when needed

-- Waiting

3

Three risks

Data race

 Incorrect concurrent access to shared data

Deadlock

 Computation cannot progress because of circular waiting

Starvation

 Execution favors certain processes over others, which
never get executed

4

Data race

 Thank you for calling Ecstatic Opera Company.
How can I help you?

 (Joan) I need a single seat for next Tuesday’s performance
of Pique Dame.

 Let me check... You’re in luck! Just one left. Eighty dollars.

 Great. I’ll go for it.

 Just a moment while I book it.

 Thanks.

 Sorry, there are no more seats available for Tuesday.

5

Data race: scenario

6

Deadlock

(Jane)

 I’d like to change my Tuesday evening seat
for the matinee performance.

 Both shows are sold out, but I heard there was a
customer who wanted to change the other way around.
Matinee booking is handled by a different office, so let
me call them and make the change.

 Thanks.

 (Ten minutes later.) “The number is still busy.”

7

Deadlock: scenario

8

Starvation

Jane keeps calling, but agents always pick up someone
else’s call

9

Execution sequences

• Execution can give rise to this execution sequence:

x := 0

P1 P2

1
2

x := 0
x := x + 1

1 x := 2

P1 1 x := 0 x = 0

P2 1 x := 2 x = 2

P1 2 x := x + 1 x = 3

Variable values after
execution of the
code on the line

Instruction executed
with Thread ID and
line number

10

Execution sequences

Possible execution sequences considering all interleavings:

x := 0

P1 P2

1
2

x := 0
x := x + 1

1 x := 2

P2 1 x := 2 x = 2

P1 1 x := 0 x = 0

P1 2 x := x + 1 x = 1

P1 1 x := 0 x = 0

P1 2 x := x + 1 x = 1

P2 1 x := 2 x = 2

P1 1 x := 0 x = 0

P2 1 x := 2 x = 2

P1 2 x := x + 1 x = 3

11

Data races (race conditions)

If processes (OS processes, threads) are completely
independent, concurrency is easy

Usually, however, threads interfere with each other by
accessing and modifying common resources, such as
variables and objects

 Unwanted dependency of the computation’s result on
nondeterministic interleaving is a race condition or data
race

 Such errors can stay hidden for a long time and are
difficult to find by testing

12

Dining philosophers

13

The dining philosophers problem

n philosophers are seated around a table; between each
pair there is a single fork

Each philosopher only thinks and eats

To eat, a philosopher needs both left and right forks (so
two adjacent philosophers cannot eat at the same time)

The problem: devise an algorithm enabling philosophers to
follow this scheme, without deadlock

14

Dining philosophers: solution attempt 1

Each philosopher first picks up the right fork, then the
left fork, and then starts eating; after having eaten, the
philosopher puts down the left fork, then the right one

 The philosophers can deadlock!

15

Dining philosophers: solution attempt 2

Each philosopher successively:

 Picks up right fork and the left fork at the same time

 Starts eating

 After having eaten, puts them both back down

A philosopher could starve!

16

SCOOP background

Simple Concurrent Object-Oriented Programming

First version described in CACM article (1993) and
chapter 32 of Object-Oriented Software Construction,
2nd edition, 1997

Prototype implementation at ETH (2005-2010)

Recent production implementation at Eiffel Software, part
of EiffelStudio

Recent descriptions: Piotr Nienaltowski’s 2007 ETH PhD;
Morandi, Nanz, Meyer (2011)

17

Example 1: bank transfer, from sequential to concurrent

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount, if available, from source to target.

do

if sourcebalance >= amount then

sourcewithdraw (amount)

targetdeposit (amount)

end

end

separate

transfer (Jane, Jill, 100)

transfer (Jane, Joan, 100)

Jane Jill Joan

100 00
0 0100

-100 1000

18

Bank transfer (better version)

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount

do

sourcewithdraw (amount)

targetdeposit (amount)

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

separate

19

Example 2: hexapod robot

Hind legs have force sensors on feet and retraction limit switches

Ganesh Ramanathan, Benjamin Morandi, IROS 2011

20

Hexapod locomotion

Alternating protraction and retraction of tripod pairs

 Begin protraction only if partner legs are down

 Depress legs only if partner legs have retracted

 Begin retraction when partner legs are up

21

Hexapod coordination rules

R1: Protraction can start only if partner group on ground

R2.1: Protraction starts on completion of retraction

R2.2: Retraction starts on completion of protraction

R3: Retraction can start only when partner group raised

R4: Protraction can end only when partner group retracted

Dürr, Schmitz, Cruse: Behavior-
based modeling of hexapod
locomotion: linking biology &
technical application, in Arthropod
Structure & Development, 2004

22

Sequential implementation

23

Multi-threaded implementation

24

SCOOP implementation

25

Hexapod coordination rules

R1: Protraction can start only if partner group on ground

R2.1: Protraction starts on completion of retraction

R2.2: Retraction starts on completion of protraction

R3: Retraction can start only when partner group raised

R4: Protraction can end only when partner group retracted

Dürr, Schmitz, Cruse: Behavior-
based modeling of hexapod
locomotion: linking biology &
technical application, in Arthropod
Structure & Development, 2004

26

Example 3: dining philosophers

27

Dining philosophers in SCOOP

class PHILOSOPHER feature
live

do

from getup until over loop

think ; eat (left, right)

end
end

eat (l, r : separate FORK)

-- Eat, having grabbed l and r.

do … end

getup do … end
over : BOOLEAN

end

28

The design of SCOOP

SCOOP intends to make concurrent programming as
predictable as sequential programming

A key criterion is “reasonability” (not a real word!): the
programmer’s ability to reason about the execution of
programs based only on their text

 As in sequential O-O programming, with contracts etc.

SCOOP is not a complete rework of basic programming
schemes, but an incremental addition to the basic O-O
scheme: one new keyword

 “Concurrency Made Easy”

29

Handling concurrency simply

SCOOP narrows down the distinction between sequential &
concurrent programming to six properties, studied next:

 (A) Single vs multiple “processors”

 (B) Regions

 (C) Synchronous vs asynchronous calls

 (D) Semantics of argument passing

 (E) Semantics of resynchronization (lazy wait)

 (F) Semantics of preconditions

30

The starting point (A): processors

To perform a computation is

 To apply certain actions

 To certain objects

 Using certain processors

Processor

Actions Objects

Sequential: one processor

Concurrent: any number of processors

31

What makes an application concurrent?

Processor:
Thread of control supporting sequential execution of
instructions on one or more objects

Can be implemented as:

 Computer CPU

 Process

 Thread

 AppDomain (.NET) …

The SCOOP model is abstract and does not specify the
mapping to such actual computational resources

Processor

Actions Objects

32

Object-oriented programming

The key operation is “feature call”

x f (args)

where x, the target of the call, denotes an object to which
the call will apply the feature f

Which processor is in charge of executing such a call?

33

(B): Regions

All calls targeting a given object will be executed by a
single processor

 The set of objects handled by a given processor is
called a region

 The processor in charge of an object is its handler

34

SCOOP restriction: one handler per object

 One processor per object: “handler”

 At most one feature (operation) active on an object at
any time

35

(C) The sequential view: O-O feature calls

x.r (a)

Processor

Client Supplier

previous

x.r (a)

next

r (x : A)
do

…
end

36

(C) The concurrent form of call: asynchronous

Client Supplier

previous

x.r (a)

next

r (x : A)
do

…
end

Client’s handler Supplier’s handler

37

The two forms of O-O call

To wait or not to wait:

 If same processor, synchronous

 If different processor, asynchronous

Difference must be captured by syntax:

 x: T

 x: separate T -- Potentially different processor

Fundamental semantic rule: a call x.r (a)

 Waits (i.e. is synchronous) for non-separate x

 Does not wait (is asynchronous) for separate x

38

Consistency rules: avoiding traitors

nonsep : T

sep : separate T

nonsep := sep

nonsep.p (a)

Traitor!

39

(D) Access control policy

Since separate calls are asynchronous there is a
real danger of confusion

Consider for example

remote_stack : separate STACK [T]

…

remote_stack.push (a)

… Instructions not affecting the stack…
y := remote_stack.top

r ()
do

end

40

(D) Access control policy

SCOOP requires the target of a separate call to
be a formal argument of enclosing routine:

put (s : separate STACK [T]; value : T)

-- Store value into s.

do

s.put (value)

end

To use separate object:
my_stack : separate STACK [INTEGER]

create my_stack

put (my_stack, 10)

41

(D) Separate argument rule

The target of a separate call

must be an argument of the enclosing routine

Separate call: x f (...) where x is separate

42

(D) Wait rule

A routine call guarantees
exclusive access to the

handlers (the processors) of all
separate arguments

a_routine (nonsep_a, nonsep_b, sep_c, sep_d, sep_e)

Exclusive access to sep_c, sep_d, sep_e within a_routine

43

An example: from sequential to concurrent

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount, if available, from source to target.

do

if sourcebalance >= amount then

sourcewithdraw (amount)

targetdeposit (amount)

end

end

separate

44

Dining philosophers in SCOOP (1)

class PHILOSOPHER feature
live

do

from getup until over loop

think ; eat (left, right)

end
end

eat (l, r : separate FORK)

-- Eat, having grabbed l and r.

do … end

getup do … end
over : BOOLEAN

end

45

(D) What the wait rule means

Beat enemy number one in concurrent world: atomicity
violations

 Data races

 Illegal interleaving of calls

Data races cannot occur in SCOOP

46

(D) Wait rule

A routine call guarantees
exclusive access to the

handlers (the processors) of all
separate arguments

a_routine (nonsep_a, nonsep_b, sep_c, sep_d, sep_e)

Exclusive access to sep_c, sep_d, sep_e within a_routine

47

(E) Resynchronization: lazy wait

How do we resynchronize after asynchronous (separate) call?

No explicit mechanism!

The client will wait when, and only when, it needs to:

x.f
x.g (a)

y.f
…

value := x.some_query

Lazy wait (also known as wait by necessity)

Wait here!

48

(E) Synchrony vs asynchrony revisited

For a separate target x:

 x  command (...) is asynchronous

 v := x  query (...) is synchronous

49

Exercise

If we do want to resynchronize explicitly, what do we do?

50

(F) Contracts

What becomes of contracts, in particular preconditions, in
a concurrent context?

51

(F) Contracts

put (b : separate QUEUE [INTEGER] ; v : INTEGER)
-- Store v into b.

require

not b.is_full
v > 0

do

b.put (v)
ensure

not b.is_empty
end

...
put (my_buffer, 10)

52

(F) Contracts

put (b : BUFFER [INTEGER] ; i : INTEGER)
-- Store i into buffer.

require

not b.is_full
i > 0

do

b.put (i)
ensure

not b.is_empty
end

...
put (my_buffer, 10)

Precondition becomes
wait condition

53

Bank transfer (version with contracts)

transfer (source, target: ACCOUNT;

amount: INTEGER)

-- Transfer amount from source to target.

require

sourcebalance >= amount

do

sourcewithdraw (amount)

targetdeposit (amount)

ensure

sourcebalance = old sourcebalance – amount

targetbalance = old targetbalance + amount

end

separate

54

(F) Full synchronization rule

A call with separate arguments waits until:

The corresponding objects are all available

 Preconditions hold

“Separate call”:

x.f (a) -- where a is separate

55

Handling concurrency simply

SCOOP narrows down the distinction between sequential &
concurrent programming to six properties, studied next:

 (A) Single vs multiple “processors”

 (B) Regions

 (C) Synchronous vs asynchronous calls

 (D) Semantics of argument passing

 (E) Semantics of resynchronization (lazy wait)

 (F) Semantics of preconditions

