
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 6:

Patterns
(with material by other members of the

team)

Note about these slides

For a more extensive version (from the “Software
Architecture” course), see

http://se.inf.ethz.ch/courses/2011a_spring/soft_ar
ch/lectures/04_softarch_patterns.pdf

The present material is a subset covering the patterns of
direct relevance to the Robotics Programming Laboratory

2

http://se.inf.ethz.ch/courses/2011a_spring/soft_arch/lectures/04_softarch_patterns.pdf

What is a pattern?

 First developed by Christopher Alexander for
constructing and designing buildings and urban areas

 “Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.”

What is a pattern?

 First developed by Christopher Alexander for
constructing and designing buildings and urban areas

 “Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.”

Example Web of Shopping (C. Alexander, A pattern language)

Conflict: Shops rarely place themselves where they best serve
people's needs and guarantee their own stability.

Resolution: Locate a shop by the following steps:
1) Identify and locate all shops offering the same service.
2) Identify and map the location of potential consumers.
3) Find the biggest gap in the web of similar shops with potential
consumers.
4) Within the gap locate your shop next to the largest cluster of other
kinds of shops.

What is a pattern?

 First developed by Christopher Alexander for
constructing and designing buildings and urban areas

 “Each pattern is a three-part rule, which expresses a
relation between a certain context, a problem, and a
solution.”

 Patterns can be applied to many areas, including
software development

Patterns in software development

Design pattern:

 A document that describes a general solution to a
design problem that recurs in many applications.

Developers adapt the pattern to their specific application.

Since 1994, various books have catalogued important
patterns. Best known is Design Patterns by Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides, Addison-
Wesley 1994.

Why design patterns?

“Designing object-oriented software is hard and designing
reusable object-oriented software is even harder.” Erich
Gamma

 Experienced object-oriented designers make good
designs while novices struggle

 Object-oriented systems have recurring patterns of
classes and objects

 Patterns solve specific design problems and make OO
designs more flexible, elegant, and ultimately reusable

7

Benefits of design patterns

 Capture the knowledge of experienced developers

 Publicly available repository

 Common pattern language

 Newcomers can learn & apply patterns

 Yield better software structure

 Facilitate discussions: programmers, managers

Design patterns

 A design pattern is an architectural scheme — a certain
organization of classes and features — that provides
applications with a standardized solution to a common
problem.

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
• Bridge
• Composite
• Decorator
• Façade
• Flyweight
• Proxy

Behavioral
• Chain of Responsibility
• Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
• Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
• Model-View-Controller

A pattern is not a reusable solution

Solution to a particular recurring design issue in a
particular context:

“Each pattern describes a problem that occurs over
and over again in our environment, and then describes
the core of the solution to this problem in such a way
that you can use this solution a million times over,
without ever doing it the same way twice.”

Gamma et al.

NOT REUSABLE

Pattern componentization

Classification of design patterns:
 Fully componentizable

 Partially componentizable

 Wizard- or library-supported

 Non-componentizable

Karine Arnout
ETH PhD, 2004

Fully componentizable (48%)

Observer pattern and event-driven progr.

Intent: “Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.”

[Gamma et al., p 331]

 Implements publish-subscribe mechanism

 Used in Model-View-Controller patterns, interface
toolkits, event

 Reduces tight coupling of classes

13

VIEW

Observer and event-driven design

A = 50%
B = 30%
C = 20%

O
b
se

rv
e
rs

S
ub

je
ct

Handling input with modern GUIs

User drives program:

“When a user presses
this button, execute
that action from my
program”

CLICK START STATION ABOVE

Event-driven programming: an example

Specify that when a
user clicks this button
the system must
execute

find_station (x, y)

where x and y are the
mouse coordinates and
find_station is a
specific procedure of
your system.

CLICK START STATION ABOVE

Event-driven programming: a metaphor

Routine

Routine

Routine

Routine

Routine

Routine

Routine

Publishers Subscribers

Alternative terminologies

 Observed / Observer

 Subject / Observer

 Publish / Subscribe

 Event-driven
design/programming

In this presentation:
Publisher and Subscriber

A solution: the Observer Pattern (GoF)

*
PUBLISHER

+
PUB_1

*
SUBSCRIBER

+
SUB_1

update *

update +

Deferred (abstract)

Effective (implemented)

*
+

Inherits from

Client (uses)

subscribe +

unsubscribe +

subscribed: LIST […]
attach
detach

+
SUB_2

…

+
PUB_2

…

publish +

Observer pattern

Publisher keeps a (secret) list of observers:
subscribed : LINKED_LIST [SUBSCRIBER]

To register itself, an observer executes
subscribe (some_publisher)

where subscribe is defined in SUBSCRIBER :

subscribe (p: PUBLISHER)
-- Make current object observe p.

require
publisher_exists: p /= Void

do
p.attach (Current)

end

s1 s2 s3 s4

Attaching an observer

In class PUBLISHER :
feature {SUBSCRIBER}

attach (s : SUBSCRIBER)
-- Register s as subscriber to this

publisher.
require

subscriber_exists : s /= Void
do

subscribed.extend (s)

end
Note that the invariant of PUBLISHER includes the clause

subscribed /= Void
(List subscribed is created by creation procedures of
PUBLISHER)

Why?

Triggering an event

publish
-- Ask all observers to
-- react to current event.

do
across

subscribed
as

s
loop

s.item.
end

end

Each descendant of SUBSCRIBER defines its own version of update

update

Dynamic binding

sub

Cursor

item

forth

after

s1 s2 s3 s4

subscribed

*
PUBLISHER

+
PUB_1

*
SUBSCRIBER

+
SUB_1

update *
subscribe+
unsubscribe+

update +

subscribed: LIST […]
attach
detach

…

publish+

Observer - Participants

Publisher
 knows its subscribers. Any number of Subscriber objects may

observe a publisher.

 provides an interface for attaching and detaching subscribers.

Subscriber
defines an updating interface for objects that should be
notified of changes in a publisher.

Concrete Publisher
 stores state of interest to ConcreteSubscriber objects.

 sends a notification to its subscribers when its state changes.

Concrete Subscriber
 maintains a reference to a ConcretePublisher object.

 stores state that should stay consistent with the publisher's.

 implements the Subscriber updating interface to keep its state
consistent with the publisher's.

23

Observer pattern (in basic form)

 Subscriber may subscribe:

 At most one operation

 To at most one publisher

 Event arguments are tricky to handle

 Subscriber knows publisher
(More indirection is desirable)

 Not reusable — must be coded anew for each application

Observer - Consequences

Observer pattern makes the coupling between publishers
and subscribers abstract.

Supports broadcast communication since publisher
automatically notifies to all subscribers.

Changes to the publisher that trigger a publication may lead
to unexpected updates in subscribers.

25

Using agents in EiffelVision

Paris_map.click.subscribe (agent find_station)

CLICK START STATION ABOVE

Mechanisms in other languages

 C and C++: “function pointers”

 C#: delegates (more limited form of agents)

Using agents (Event Library)

Event: each event type will be an object
Example: left click

Context: an object, usually
representing a user interface element

Example: the map

Action: an agent representing a routine

Example: find_station

The Event library

Basically:

 One generic class: EVENT_TYPE

 Two features: publish and subscribe

For example: A map widget Paris_map that reacts in a way
defined in find_station when clicked (event left_click):

Event library: a simple implementation

class

EVENT_TYPE [ARGS -> TUPLE]

inherit ANY
redefine default_create end

feature {NONE } -- Implementation

subscribers : LINKED_LIST [PROCEDURE [ANY, ARGS]]

feature {NONE } -- Initialization

default_create
-- Initialize list.

do
create subscribers make

subscribers compare_equal
end

30

Simplified event library (end)

feature -- Basic operations

subscribe (action: PROCEDURE [ANY, ARGS])
-- Add action to subscription list.

require
exists: action /= Void

do
subscribers extend (action)

ensure
subscribed : subscribers has (action)

end

publish (arguments: ARGS)
-- Call subscribers.

require
exist : arguments /= Void

do
across subscribers as s loop s item call (arguments) end

end
end

31

Event Library style

The basic class is EVENT_TYPE

On the publisher side, e.g. GUI library:

 (Once) declare event type:

click : EVENT_TYPE [TUPLE [INTEGER, INTEGER]]

 (Once) create event type object:

create click

 To trigger one occurrence of the event:

click.publish ([x_coordinate, y_coordinate])

On the subscriber side, e.g. an application:

click.subscribe (agent find_station)

Example using the Event library

The subscribers (“observers”) subscribe to events:

Paris_map.click.subscribe (agent find_station)

The publisher (“subject”) triggers the event:

click.publish ([x_positition, y_position])

Someone (generally the publisher) defines the event type :

click : EVENT_TYPE [TUPLE [INTEGER, INTEGER]]
-- Mouse click events

once
create Result

ensure
exists: Result /= Void

end

Subscriber variants

click.subscribe (agent find_station)

Paris_map.click.subscribe (agent find_station)

click.subscribe (agent your_procedure (a, ?, ?, b))

click.subscribe (agent other_object.other_procedure)

Observer pattern vs. Event Library

In case of an existing class MY_CLASS :

 With the Observer pattern:
 Need to write a descendant of SUBSCRIBER and

MY_CLASS

 Useless multiplication of classes

 With the Event Library:
 Can reuse the existing routines directly as agents

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
• Visitor

Non-GoF patterns
 Model-View-Controller

37

Visitor pattern

Intent:

“Represents an operation to be performed on the elements
of an object structure. Visitor lets you define a new
operation without changing the classes of the elements
on which it operates.”

[Gamma et al., p 331]

 Static class hierarchy

 Need to perform traversal operations on
corresponding data structures

 Avoid changing the original class structure

38

Visitor application examples

Set of classes to deal with an Eiffel or Java program (in
EiffelStudio, Eclipse ...)

Or: Set of classes to deal with XML documents
(XML_NODE, XML_DOCUMENT, XML_ELEMENT,
XML_ATTRIBUTE, XML_CONTENT…)

One parser (or several: keep comments or not…)

Many formatters:

 Pretty-print

 Compress

 Convert to different encoding

 Generate documentation

 Refactor

 …

Inheritance hierarchy

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2

* deferred

+ effective

++ redefined

side1

Polymorphic data structures

(POLYGON) (CIRCLE) (POLYGON)(CIRCLE) (ELLIPSE)

from
figs start

until
figs after

loop
figs item display
figs forth

end

figs : LIST [FIGURE]

The dirty secret of O-O architecture

Is it easy to add types
(e.g. TRIANGLE) to
existing operations

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2
side1

The dirty secret of O-O architecture

Is it easy to add types
(e.g. TRIANGLE) to
existing operations

What about the reverse: adding an operation to existing types?

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

center * display*
rotate*

diagonal

...
...

+
+

side2
side1

Adding operations – solution 1

Add them
directly to the
classes

43

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

display*
rotate*

perimeter *

perimeter +perimeter +

perimeter ++

diagonal

...
...

perimeter ++

+
+

side2

perimeter ++

side1

perimeter ++

Dynamic binding will take care of finding the right version

perimeter ++

write_xml ++

write_pdf ++

write_ps ++

perimeter ++

write_xml ++

write_pdf ++

write_ps ++

perimeter +

write_xml +

write_pdf +

write_ps +

Adding operations – solution 1

But:

• operations may clutter the classes

• classes might belong to libraries out of your control
44

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

display*
rotate*

perimeter *

diagonal

...
...

+
+

side2
side1

perimeter +

write_xml +

write_pdf +

write_ps +

write_xml*
write_pdf*
write_ps*

write_xml +

write_pdf +

write_ps +

perimeter ++

write_xml ++

write_pdf ++

write_ps ++
perimeter ++

write_xml ++

write_pdf ++

write_ps ++

Adding operations – solution 2

But:

• Lose benefits of dynamic binding

• Many large conditionals
45

write_xml (f : FIGURE)

-- Write figure to xml.

require exists: f/= Void

do

…

if attached {RECT } f as r then

doc.put_string (“<rect/>”)

end

if attached {CIRCLE } f as c then

doc.put_string (“<circle/>”)

end

... Other cases …

end
end

write_ps (f : FIGURE)

-- Write figure to xml.

require exists: f/= Void

do

…

if attached {RECT } f as r then

doc.put_string (r.side_a.out)

end

if attached {CIRCLE } f as c then

doc.put_string (c.diameter)

end

... Other cases …

end
end

perimeter ++

accept ++

perimeter ++

accept ++

perimeter +

accept +

Adding operations – solution 3

Combine solution 1 & 2:

• Put operations into a separate class

• Add one placeholder operation accept (dynamic binding)
46

FIGURE
*

OPEN_
FIGURE

*
CLOSED_
FIGURE

*

SEGMENT POLYLINE POLYGON
ELLIPSE

CIRCLE

RECTANGLE
TRIANGLE

SQUARE

display*
rotate*

perimeter *

diagonal

...
...

+
+

side2
side1

perimeter +

accept +

accept*

accept +

perimeter ++

accept ++

perimeter ++

accept ++

accept +

Adding operations – solution 3

47

+
XML_

WRITER

+
PDF_

WRITER

*
VISITOR

visit_circle*
visit_rectangle*
visit_ellipse*
visit_polygon*
visit_square*

visit_circle +

visit_rectangle +

visit_ellipse +

visit_polygon +

visit_square +

visit_circle +

visit_rectangle +

visit_ellipse +

visit_polygon +

visit_square +

class CIRCLE

feature

accept (v : VISITOR)

--Call procedure of visitor.

do

v.visit_circle (Current)

end

... Other features …
end

class FIGURE

feature

accept (v : VISITOR)

--Call procedure of visitor.

deferred

end

... Other features …
end

The visitor ballet

T_TARGET V_VISITOR

CLIENT

Client
(calls)

Client
(knows
about)

t accept (v)

v visit_T (Current)

v

49

Vehicle example

+
TAXI

+
BUS

*
VEHICLE

We want to add external functionality, for example:

 Maintenance

 Schedule a vehicle for a particular day

50

Visitor participants

Target classes

Example: BUS, TAXI

Client classes

Application classes that need to perform

operations on target objects

Visitor classes

Written only to smooth out the collaboration

between the other two

Visitor participants

Visitor

General notion of visitor

Concrete visitor

Specific visit operation, applicable to all target elements

Target

General notion of visitable element

Concrete target

Specific visitable element

51

+
MAINTENANCE_

VISITOR

+
SCHEDULE_

VISITOR

52

Visitor class hierarchies

+
TAXI

+
BUS

*
VISITOR

accept*

accept+ accept+

visit_bus*

visit_taxi +visit_taxi +

visit_bus +

visit_taxi*
*

VEHICLE

visit_bus +

Target classes Visitor classes

v.visit_T (Current)

53

The maintenance visitor

class MAINTENANCE_VISITOR inherit

VISITOR

feature -- Basic operations

visit_taxi (t : TAXI)

-- Perform maintenance operations on t.

do

t send_to_garage (Next_monday)

end

visit_bus (b: BUS)

-- Perform maintenance operations on b.

do
b send_to_depot

end
end

54

The scheduling visitor

class MAINTENANCE_VISITOR inherit

VISITOR

feature -- Basic operations

visit_taxi (t : TAXI)

-- Perform scheduling operations on t.

do

...

end

visit_bus (b: BUS)

-- Perform scheduling operations on b.

do
...

end
end

55

Changes to the target classes

class BUS inherit
VEHICLE

feature
accept (v : VISITOR)

-- Apply bus visit to v.
do

v.visit_bus (Current)
end

end

deferred class
VEHICLE

feature

... Normal VEHICLE
features ...

accept (v : VISITOR)
-- Apply vehicle visit to v.

deferred
end

end

class TAXI inherit
VEHICLE

feature
accept (v : VISITOR)

-- Apply taxi visit to v.
do

v.visit_taxi (Current)
end

end

+
MAINT_
VISITOR

+
SCHEDULE_

VISITOR

56

The visitor pattern

+
TAXI

+
BUS

*
VISITOR

accept*

accept + accept +

visit_bus*

visit_taxi +visit_taxi +

visit_bus +

visit_tram*

*
VEHICLE

visit_bus +

Target classes

v visit_T (Current)

+
V_VISITOR

visit_taxi +

Visitor classes

+
T

accept +

t accept (v) v

visit_bus +

v visit_T (Current)

CLIENT

Example client calls:
bus21.accept (maint_visitor)
fleet.item.accept (maint_visitor)

57

Visitor provides double dispatch

Client:

t.accept (v)

Target class (in accept):

v.visit_T (t)

Visitor class V_VISITOR (in visit_T):

v.visit_T (t)

-- For the right V and T !

visit_taxi +accept +

t accept (v) v

visit_bus +

v visit_T (Current)
+

V_VISITOR
+
T

CLIENT

58

Visitor - Consequences

Makes adding new operations easy

Gathers related operations, separates unrelated ones

Avoids assignment attempts

 Better type checking

Adding new concrete element is hard

59

Visitor vs dynamic binding

Dynamic binding:

 Easy to add types

 Hard to add operations

Visitor:

 Easy to add operations

 Hard to add types

61

Visitor – Componentization

Fully componentizable

One generic class VISITOR [G]
e.g. maintenance_visitor : VISITOR [VEHICLE]

Actions represented as agents
actions : LIST [PROCEDURE [ANY, TUPLE [G]]]

No need for accept features
visit determines the action applicable to the given
element

For efficiency
Topological sort of actions (by conformance)
Cache (to avoid useless linear traversals)

62

Visitor Library interface (1/2)

class

VISITOR [G]

create

make

feature {NONE} -- Initialization

make
-- Initialize actions.

feature -- Visitor

visit (e : G)
-- Select action applicable to e .

require
e_exists: e /= Void

feature -- Access

actions: LIST [PROCEDURE [ANY, TUPLE [G]]]
-- Actions to be performed depending on the element

63

Visitor Library interface (2/2)

feature -- Element change

extend (action: PROCEDURE [ANY, TUPLE [G]])
-- Add action to list.

require
action_exists: action /= Void

ensure
one_more: actions.count = old actions.count + 1
inserted: actions.last = action

append (some_actions: ARRAY [PROCEDURE [ANY, TUPLE [G]]])
-- Append actions in some_actions
-- to the end of the actions list.

require
actions_exit: some_actions /= Void
no_void_action: not some_actions.has (Void)

invariant

actions_exist: actions /= Void
no_void_action: not actions.has (Void)

end

64

Using the Visitor Library

maintenance_visitor: VISITOR [VEHLICLE]

create maintenance_visitor.make
maintenance_visitor.append ([

agent maintain_taxi,
agent maintain_trolley,
agent maintain_tram

])

maintain_taxi (a_taxi: TAXI) ...
maintain_trolley (a_trolley: TROLLEY) ...
maintain_tram (a_tram: TRAM) ...

Topological sorting of agents (1/2)

*
VEHICLE

+
TAXI

*
PUBLIC_
VEHICLE

+
TRAM

+
BUS

65

+
TROLLEY

Topological sorting of agents (2/2)

schedule_visitor.extend (agent schedule_taxi)

schedule

_taxi
schedule_trolley schedule_

bus

schedule_

vehicle

schedule_

tram

schedule_visitor.extend (agent schedule_bus)
schedule_visitor.extend (agent schedule_vehicle)
schedule_visitor.extend (agent schedule_tram)
schedule_visitor.extend (agent schedule_trolley)

1 5 2 4 3

schedule_visitor.visit (a_bus)
66

For agent schedule_a (a: A) and schedule_b (b: B), if A conforms to
B, then position of schedule_a is before position of schedule_b in
the agent list

Visitor library vs. visitor pattern

Visitor library:

• Removes the need to change existing classes

• More flexibility (may provide a procedure for an
intermediate class, may provide no procedure)

• More prone to errors – does not use dynamic binding to
detect correct procedure, no type checking

Visitor pattern

• Need to change existing classes

• Dynamic binding governs the use of the correct
procedure (type checking that all procedures are available)

• Less flexibility (need to implement all procedures
always)

67

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
• Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
• Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

69

Strategy

Intent:

“Define a family of algorithms, encapsulate each one, and
make them interchangeable. Strategy lets the
algorithm vary independently from clients that use it”.

[Gamma et al., p 315]

Example application

selecting a sorting algorithm on-the-fly

Life without strategy: a sorting example

feature -- Sorting
sort (il : LIST [INTEGER]; st : INTEGER)

-- Sort il using algorithm indicated by st.
require

is_valid_strategy (st)
do

inspect
st

when binary then …
when quick then …
when bubble then …
else …
end

ensure
list_sorted: …

end

What if a new algorithm is needed ?

70

Strategy pattern: overall architecture

+
STRATEGY_B

+
STRATEGY_C

*
STRATEGY

+
CONTEXT

perform

perform+ perform+ perform+

perform*
strategy

71

+
STRATEGY_A

Class STRATEGY

deferred class
STRATEGY

feature -- Basic operation

perform
-- Perform algorithm according to chosen strategy.

deferred
end

end

72

Using a strategy

class
CONTEXT

create
make

feature -- Initialization

make (s: like strategy)
-- Make s the new strategy.
-- (Serves both as creation procedure and to reset strategy.)

do
strategy := s

ensure
strategy_set: strategy = s

end

73

Using a strategy

feature – Basic operations

perform
-- Perform algorithm according to chosen strategy.

do

strategy.perform
end

feature {NONE } – Implementation

strategy : STRATEGY
-- Strategy to be used

end

74

Using the strategy pattern

sorter_context: SORTER_CONTEXT

bubble_strategy: BUBBLE_STRATEGY

quick_strategy: QUICK_STRATEGY

create sorter_context.make (bubble_strategy)
sorter_context.sort (a_list)
sorter_context.make (quick_strategy)
sorter_context.sort (a_list)

Now, what if a new algorithm is needed ?hash_strategy: HASH_STRATEGY

sorter_context.make (hash_strategy)
sorter_context.sort (a_list)

75

Application classes can
also inherit from
CONTEXT (rather
than use it as clients)

Strategy - Consequences

 Pattern covers classes of related algorithms

 Provides alternative implementations without conditional

instructions

 Clients must be aware of different strategies

 Communication overhead between Strategy and Context

 Increased number of objects

76

Strategy - Participants

Strategy
declares an interface common to all supported algorithms.

Concrete strategy
implements the algorithm using the Strategy interface.

Context
 is configured with a concrete strategy object.

 maintains a reference to a strategy object.

77

Design patterns (GoF)

Creational
• Abstract Factory
• Singleton
• Factory Method
• Builder
• Prototype

Structural
• Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
• Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
• Interpreter
• Iterator
• Mediator
• Memento
 Observer
• State
 Strategy
• Template Method
 Visitor

Non-GoF patterns
 Model-View-Controller

79

State pattern

Intent:

“Allows an object to alter its behavior when its internal
state changes. The object will appear to change its class”.

Application example:

 Add attributes without changing class.

 Simulate the (impossible) case of an object changing
its type during execution.

 State machine simulation.

Example application: Drawing tool

Mouse actions have different behavior

 Pen tool

Mouse down: Start point of line

Mouse move: Continue draw of line

Mouse up: End draw line, change back to selection mode

 Selection tool
Mouse down: Start point selection rectangle

Mouse move: Update size of selection rectangle

Mouse up: Select everything inside selection rectangle

 Rectangle tool

Mouse down: Start point of rectangle

Mouse move: Draw rectangle with current size

Mouse up: End draw rectangle, change back to selection mode

…
80

Tool state

deferred class TOOL_STATE feature

process_mouse_down (pos :POSITION)
-- Perform operation in response to mouse down.

deferred end

process_mouse_up (pos :POSITION)
-- Perform operation in response to mouse up.

deferred end

process_mouse_move (pos : POSITION)
-- Perform operation in response to mouse move.

deferred end

-- Continued on next slide

81

Tool states know their context (in this solution)

feature -- Element change

set_context (c : CONTEXT)
-- Attach current state to c.

do
context := c

end

feature {NONE } – Implementation

context : CONTEXT
-- The client context using this state.

end

82

A particular state

class RECTANGLE_STATE inherit TOOL_STATE
feature -- Access

start_position: POSITION

feature -- Basic operations
process_mouse_down (pos :POSITION)

-- Perform operation in response to mouse down.
do start_position := pos end

process_mouse_up (pos :POSITION)
-- Perform operation in response to mouse up.

do context.set_state (context.selection_tool) end

process_mouse_move (pos : POSITION)
-- Perform edit operation in response to mouse move.

do context.draw_rectangle (start_position, pos) end

end
83

A stateful environment client

class CONTEXT feature -- Basic operations
process_mouse_down (pos :POSITION)

-- Perform operation in response to mouse down.
do

state. process_mouse_down (pos)
end

process_mouse_up (pos :POSITION)
-- Perform operation in response to mouse up.

do
state. process_mouse_up (pos)

end

process_mouse_move (pos : POSITION)
-- Perform operation in response to mouse move.

do
state. process_mouse_move (pos)

end
84

Stateful client: status and element change

feature -- Access

pen_tool, selection_tool, rectangle_tool: like state
-- Available (next) states.

state : TOOL_STATE.
feature -- Element change

set_state (s : STATE)
-- Make s the next state.

do
state := s.

end

… -- Initialization of different state attributes

end

85

State pattern: overall architecture

86

+
STATE3

*
STATE

+
STATEFUL

perform

perform+ perform+ perform+

perform*state

context

+
STATE2

+
STATE1

In the example: process_mouse_X

State pattern - componentization

Componentizable, but not comprehensive

State - Consequences

The pattern localizes state-specific behavior and partitions
behavior for different states

It makes state transitions explicit

State objects can be shared

88

State - Participants

Stateful
 defines the interface of interest to clients.

 maintains an instance of a Concrete state subclass that defines the
current state.

State
defines an interface for encapsulating the behavior associated with a

particular state of the Context.

Concrete state
each subclass implements a behavior associated with a state of the Context

89

Summary of patterns – Structural patterns

90

Bridge:
Separation of
interface from
implementation

Composite:
Uniform handling
of compound and
individual objects

Decorator: Attaching
responsibilities to objects
without subclassing

Façade: A unified interface
to a subsystem

Flyweight: Share objects
and externalize state

Summary of patterns – Behavioral patterns

91

Observer; MVC: Publish-
subscribe mechanism (use
EVENT_TYPE with agents!);
Separation of model and view

Command: History with
undo/redo (use version with
agents!)

Visitor: Add operations to
object hierarchies without
changing classes

Strategy: Make algorithms
interchangeable

Chain of responsibility: Allow
multiple objects to handle
request

State: Object appears to
change behavior if state
changes

Summary of patterns – Creational patterns

92

Abstract factory: Hiding
the creation of product
families

Factory method: Interface
for creating an object, but
hiding its concrete type
(used in abstract factory)

Prototype: Use twin or clone
to duplicate an object

Builder:
Encapsulate
construction
process of a
complex object

Singleton:
Restrict a class
to globally have
only one
instance and
provide a global
access point to
it

Design patterns: References

 Erich Gamma, Ralph Johnson, Richard Helms, John
Vlissides: Design Patterns, Addison-Wesley, 1994

 Jean-Marc Jezequel, Michel Train, Christine Mingins:
Design Patterns and Contracts, Addison-Wesley, 1999

 Karine Arnout: From Patterns to Components, 2004 ETH
thesis, http://e-
collection.ethbib.ethz.ch/eserv/eth:27168/eth-27168-
02.pdf

http://se.inf.ethz.ch/people/arnout/patterns/

Pattern componentization: references

Bertrand Meyer:The power of abstraction, reuse and simplicity: an
object-oriented library for event-driven design, in From Object-
Orientation to Formal Methods: Essays in Memory of Ole-Johan Dahl,
Lecture Notes in Computer Science 2635, Springer-Verlag, 2004,
pages 236-271

se.ethz.ch/~meyer/ongoing/events.pdf

Karine Arnout and Bertrand Meyer: Pattern Componentization: the
Factory Example, in Innovations in Systems and Software Technology
(a NASA Journal) (Springer-Verlag), 2006

se.ethz.ch/~meyer/publications/nasa/factory.pdf

Bertrand Meyer and Karine Arnout: Componentization: the Visitor
Example, in Computer (IEEE), vol. 39, no. 7, July 2006, pages 23-30

se.ethz.ch/~meyer/publications/computer/visitor.pdf

 Bertrand Meyer, Touch of Class, 16.14 Reversing the structure:
Visitor and agents, page 606 – 613, 2009
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pd

f

http://www.inf.ethz.ch/~meyer/ongoing/events.pdf
http://se.ethz.ch/~meyer/publications/nasa/factory.pdf
http://se.ethz.ch/~meyer/publications/computer/visitor.pdf
http://www.springerlink.com/content/n6ww275n43114383/fulltext.pdf

