
Chair of Software Engineering

Robotics Programming Laboratory

Bertrand Meyer
Jiwon Shin

Lecture 9: Software Architecture

in Robotics

Some design patterns

Creational
 Abstract Factory
 Builder
 Factory Method
 Prototype
 Singleton

Structural
 Adapter
 Bridge
 Composite
 Decorator
 Façade
 Flyweight
 Proxy

Behavioral
 Chain of Responsibility
 Command (undo/redo)
 Interpreter
 Iterator
 Mediator
 Memento
 Observer
 State
 Strategy
 Template Method
 Visitor

Erich Gamma, Ralph Johnson, Richard

Helms, John Vlissides: Design Patterns,

Addison-Wesley, 1994

Benefits of design patterns

 Capture the knowledge of experienced developers

 Publicly available repository

 Common pattern language

 Newcomers can learn & apply patterns

 Yield better software structure

 Facilitate discussions: programmers, managers

Chair of Software Engineering

Architectural styles
(based in part on material by Peter Müller)

5

Software architecture styles

An architectural style is defined by

 Type of basic architectural components
(e.g. classes, filters, databases, layers)

 Type of connectors
(e.g. calls, pipes, inheritance,
event broadcast)

6

Model-View Controller
(Trygve Reenskaug, 1979)

7

Architecture styles

Overall system organization:
 Hierarchical
 Client-server
 Cloud-based
 Peer-to-peer

Individual program structuring:
 Control-based

• Call-and-return (Subroutine-based)
• Coroutine-based

 Dataflow:
• Pipes and filters
• Blackboard
• Event-driven

 REST
 Object-oriented

8

Hierarchical

Each layer provides services to the layer above it and
acts as a client of the layer below

Each layer collects services at a particular level of
abstraction

A layer depends only on lower layers

 Has no knowledge of higher layers

Example

 Communication protocols

 Operating systems

9

Hierarchical

Components

 Group of subtasks which implement an abstraction
at some layer in the hierarchy

Connectors

 Protocols that define how the layers interact

10

Hierarchical: examples

THE operating system (Dijkstra)

The OSI Networking Model

 Each level supports communication at a level of
abstraction

 Protocol specifies behavior at each level of
abstraction

 Each layer deals with specific level of communication
and uses services of the next lower level

Layers can be exchanged

 Example: Token Ring for Ethernet on Data Link
Layer

11

OSI model layers

The system you are designing

Data transformation services, such as
byte swapping and encryption

Initializes a connection, including
authentication

Reliably transmits messages

Transmits & routes data within network

Sends & receives frames without error

Sends and receives bits over a channelPhysical

Data Link

Network

Transport

Session

Presentation

Application

12

Hierarchical style example

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Use service of

lower layer

Virtual

connection

13

Hierarchical: discussion

Strengths:
 Separation into levels of abstraction; helps partition

complex problems
 Low coupling: each layer is (in principle) permitted to

interact only with layer immediately above and under
 Extendibility: changes can be limited to one layer
 Reusability: implementation of a layer can be reused

Weaknesses:
 Performance overhead from going through layers
 Strict discipline often bypassed in practice

14

Call-and-return

Components: Objects

Connectors: Messages (routine invocations)

Key aspects

 Object preserves integrity of representation
(encapsulation)

 Representation is hidden from client objects

Variations

 Objects as concurrent tasks

15

Call-and-return

Strengths:
 Change implementation without affecting clients
 Can break problems into interacting agents
 Can distribute across multiple machines or networks

Weaknesses:
 Objects must know their interaction partners; when partner

changes, clients must change
 Side effects: if A uses B and C uses B, then C’s effects on B

can be unexpected to A

16

Client-server

Components

 Subsystems, designed as independent processes

 Each server provides specific services, e.g. printing,
database access

 Clients use these services

Connectors

 Data streams, typically over a communication
network

Network Server

Client

Client

Client

17

Client -server example: databases

Clients: user applications
 Customized user interface
 Front-end processing of data
 Initiation of server remote procedure calls
 Access to database server across the network

Server: DBMS, provides:
 Centralized data management
 Data integrity and database consistency
 Data security
 Concurrent access
 Centralized processing

18

Client-server variants

Thick / fat client

 Does as much processing as possible

 Passes only data required for communications and
archival storage to the server

 Advantage: less network bandwidth, fewer server
requirements

Thin client

 Has little or no application logic

 Depends primarily on server for processing

 Advantage: lower IT admin costs, easier to secure,
lower hardware costs.

19

Client-server: discussion

Strengths:
 Makes effective use of networked systems
 May allow for cheaper hardware
 Easy to add new servers or upgrade existing servers
 Availability (redundancy) may be straightforward

Weaknesses:
 Data interchange can be hampered by different data

layouts
 Communication may be expensive
 Data integrity functionality must be implemented for

each server
 Single point of failure

20

Client-server variant: cloud computing

The server is no longer on a company’s network, but hosted
on the Internet, typically by a providing company

Example: cloud services by Google, Amazon, Microsoft

Advantages:

 Scalability

 Many issues such as security, availability, reliability
are handled centrally

Disadvantages:

 Loss of control

 Dependency on Internet

22

Peer-to-peer

Similar to client-server style, but each component is both
client and server
Pure peer-to-peer style

 No central server, no central router
Hybrid peer-to-peer style

 Central server keeps information on peers and
responds to requests for that information

Examples
 File sharing applications, e.g., Napster
 Communication and collaboration, e.g., Skype

23

Peer-to-peer: discussion

Strengths:
 Efficiency: all clients provide resources
 Scalability: system capacity grows with number of clients
 Robustness

• Data is replicated over peers
• No single point of failure (in pure peer-to-peer

style)

Weaknesses:
 Architectural complexity
 Resources are distributed and not always available
 More demanding of peers (compared to client-server)
 New technology not fully understood

24

Subroutines

Similar to hierarchical structuring at the program level

Functional decomposition

A

B C D

E1 I1 C2 I2I

Topmost functional abstraction

25

Subroutines

Advantages:

 Clear, well-understood decomposition

 Based on analysis of system’s function

 Supports top-down development

Disadvantages:

 Tends to focus on just one function

 Downplays the role of data

 Strict master-slave relationship; subroutine loses
context each time it terminates

 Adapted to the design of individual functional
pieces, not entire system

26

Coroutines

A more symmetric relationship than subroutines

Particularly applicable to simulation applications

A simulated form of concurrency

27

Dataflow systems

Availability of data controls the computation

The structure is determined by the orderly motion of data
from component to component

Variations:

 Control: push versus pull

 Degree of concurrency

 Topology

28

Dataflow: batch-sequential

Frequent architecture in scientific computing and business
data processing

Components are independent programs

Connectors are media, typically files

Each step runs to completion before next step begins

Program Program Program

Component

File

29

Batch-sequential

History: mainframes and magnetic tape

Business data processing

 Discrete transactions of predetermined type and
occurring at periodic intervals

 Creation of periodic reports based on periodic data
updates

Examples

 Payroll computations

 Tax reports

30

Dataflow: pipe-and-filter

Component: filter

 Reads input stream (or streams)

 Locally transforms data

 Produces output stream (s)

Connector: pipe

 stream, e.g., FIFO buffer

Filter
Filter

Filter
Filter

Filter

Pipe

31

Pipe-and-filter

Data processed incrementally as it arrives

Output can begin before input fully consumed

Filters must be independent: no shared state

Filters don’t know upstream or downstream filters

Examples

 lex/yacc-based compiler (scan, parse, generate…)

 Unix pipes

 Image / signal processing

32

Push pipeline with active source

Source of each pipe pushes data downstream

Example with Unix pipes:

grep p1 * | grep p2 | wc | tee my_file

dataSource filter1 filter2 dataSink

write(data)

f1(data)

write(data)

f2(data)

Active
source

Push

33

Pipe-and-filter: discussion

Strengths:
 Reuse: any two filters can be connected if they agree on

data format
 Ease of maintenance: filters can be added or replaced
 Potential for parallelism: filters implemented as separate

tasks, consuming and producing data incrementally

Weaknesses:
 Sharing global data expensive or limiting
 Scheme is highly dependent on order of filters
 Can be difficult to design incremental filters
 Not appropriate for interactive applications
 Error handling difficult: what if an intermediate filter

crashes?
 Data type must be greatest common denominator, e.g. ASCII

34

Dataflow: event-based (publish-subscribe)

A component may:
 Announce events
 Register a callback

for events of other
components

Connectors are the
bindings between event
announcements and
routine calls (callbacks)

RoutineRoutine

Routine

Routine

Routine

Routine

Routine

35

Event-based style: properties

Publishers of events do not know which components
(subscribers) will be affected by those events

Components cannot make assumptions about ordering of
processing, or what processing will occur as a result of
their events

Examples

 Programming environment tool integration

 User interfaces (Model-View-Controller)

 Syntax-directed editors to support incremental
semantic checking

36

Event-based style: example

Integrating tools in a shared environment

Editor announces it has finished editing a module

 Compiler registers for such announcements and
automatically re-compiles module

 Editor shows syntax errors reported by compiler

Debugger announces it has reached a breakpoint

 Editor registers for such announcements and
automatically scrolls to relevant source line

37

Event-based: discussion

Strengths:
 Strong support for reuse: plug in new components by

registering it for events
 Maintenance: add and replace components with minimum

effect on other components in the system

Weaknesses:
 Loss of control:

 What components will respond to an event?
 In which order will components be invoked?
 Are invoked components finished?

 Correctness hard to ensure: depends on context and
order of invocation

38

Data-centered (repository)

Components

 Central data store component represents state

 Independent components operate on data store

Repository

Knowledge
Source

Knowledge
Source

Knowledge
Source

Computation

Direct
access

39

Data-Centered: discussion

Strengths:
 Efficient way to share large amounts of data
 Data integrity localized to repository module

Weaknesses:
 Subsystems must agree (i.e., compromise) on a

repository data model
 Schema evolution is difficult and expensive
 Distribution can be a problem

40

Blackboard architecture

Interactions among knowledge sources solely through
repository

Knowledge sources make changes to the shared data that
lead incrementally to solution

Control is driven entirely by the state of the blackboard

Example

 Repository: modern compilers act on shared data:
symbol table, abstract syntax tree

 Blackboard: signal and speech processing

41

Blackboard architecture: example

The EVE architecture

42

The EVE architecture (ETH chair of SE)

Arbiter

AutoProof

Alias
analysis

AutoFix

Test case
generation

EVE Test
execution

Test results

Inter.
prover

Sep. logic
prover

AutoTest

Invariant
inference

Invariant
inference

Suggestions

Suggestions

43

Interpreters

Architecture is based on a virtual machine produced in
software

Special kind of a layered architecture where a layer is
implemented as a true language interpreter

Components

 “Program” being executed and its data

 Interpretation engine and its state

Example: Java Virtual Machine

 Java code translated to platform independent
bytecode

 JVM is platform specific and interprets the
bytecode

44

Object-oriented

Based on analyzing the types of objects in the system and
deriving the architecture from them

Compendium of techniques meant to enhance extendibility
and reusability: contracts, genericity, inheritance,
polymorphism, dynamic binding…

Thanks to broad notion of what an “object” is (e.g. a
command, an event producer, an interpreter…), allows many
of the previously discussed styles

