ETHZ D-INFK

Prof.

Dr. B. Meyer, Dr. C. A. Furia, Dr. S. Nanz Software Verification

Software Verification — Exam

ETH Ziirich

17 December 2012

Surname, first name: ...

Student NUMDEr: ...

I confirm with my signature that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

SIZNALUTE: ..ooiiiiiiiiiiii e

Directions:

Exam duration: 1 hour 45 minutes.

Except for a dictionary you are not allowed to use any supplementary
material.

All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

Please write legibly! We will only correct solutions that we can read.

Manage your time carefully (take into account the number of points for
each question).

Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!

Question

Available points

Your points

1) Axiomatic semantics 18
2) Separation Logic 15
3) Data flow analysis 10
4) Model checking 15
5) Real time verification 12
Total 70

[This page is intentionally left blank.]

1 Axiomatic semantics (18 points)

Consider the following annotated program, where A is an array indexed from 1
of element type G, n is an integer variable storing A’s size, k is another integer
variable, v is a variable of type G initialized to some fixed value, found is a
Boolean variable.

{n=0}
1 from
2 k:=mn
3 found := False
4 until found or k <1 loop
5 if A[k] = vthen
6 found := True
7 else
8 k=k—1
9 end
10 end

{ (found = 1<k<n A A[k] = v) A (~found = k <1)}

1.1 Program semantics (2 points)

Characterize, in plain English, which value of k the program computes from the
inputs A, n, and v. In other words: what does the program do?

1.2 Partial correctness (15 points)

Prove that the triple (precondition, program, postcondition) is a theorem of
Hoare’s axiomatic system for partial correctness.

1.3 Termination (1 point)

Find a suitable variant function V' to prove termination. V must be such that it
decreases along all branches of the loop body, and it is nonnegative after every
iteration of the loop. You do not have to prove termination, just write a suitable
variant and informally argue why it is a suitable variant.

2 Separation Logic (15 points)
A well-formed binary tree t is given by the grammar:
t 0| (1)
So a tree value t can be either a leaf, which is a single number n, or an internal
node with a left subtree ¢; and a right subtree 5.
Consider the definition of the recursive predicate tree t ¢ which asserts that

1 is a pointer to a well-formed binary tree ¢:

. def .
tree n 1 = z:)fn
tree (t1,ta) i = A, v i I,r % tree t1 | * tree to v

With these definitions in mind, answer the following questions.

2.1 Predicate Satisfaction (6 points)

Consider the following program state:

Stack Heap

[1

A 4

v
A 4

<]
B

A 4

|
_\L v
1

|
2

Indicate in the table whether or not a given assertion is satisfied by this state.
Indicate satisfaction with a T and non-satisfaction with an F.

Assertion TorF
dz-i— 2z

dx,y-i— L,xxxz =y, 4*true

dj - tree (2,3) j * true
Jj,t-i—>jxj>1xtreet (i+1)

Elt17t2 - tree (tl,(t2,4)))

Jj ki jxj= 1x(i+1)— kxtree ((2,3),4) k

2.2 Code Verification (9 points)

Give a brief proof outline of the following triple. There must be at least one
assertion between every two sub-commands.

{tree (1,t) i}

x:=[i]; [i]:=2; y:=[i+1]; dispose i; dispose z; dispose (i + 1)

{tree t y}

3 Data flow analysis (10 points)

Consider the following program fragment (all variables are of type INTEGER):

1 from

2 T:i=n

3 until z < 0 do
4 z:=z—1

5 if y >2 then
6 y:=1—y
7 end

8 r:=y—4

9 if z >0 then
10 T =y + 2
11 end

12 z:=xz—1
13 end

14 z:=2xy

15 print (2)

(1) (8 points) Draw the control flow graph of the program fragment and label
each elementary block.

(2) (5 points) Annotate your control flow graph with the analysis result of a
live variables analysis of the program fragment.

10

11

(3) (2 points) Explain how the live variables analysis can be used for dead
code elimination, and apply this technique to the program fragment; it
suffices to state which statement(s), if any, would be removed as dead code.

12

[This page is intentionally left blank.]

13

4 Model Checking (15 points)

Recall the semantics of LTL over finite words with alphabet P. For a word
w = w(l)w(2)---w(n) € P* with n > 0 and a position 1 < ¢ < n the satisfac-
tion relation [is defined recursively as follows (where p,q € P).

w,i = p it p=w(i)
w,i | it w,ilEo
wyiiE ¢ NPy Mf w,ifE¢; and w,i = ¢o
w,i | X¢ iff i<nandw,i+1fF¢
w,i = ¢1 Ugy iff there exists ¢ < j < n such that: w,j = ¢
and for all i < k < j it is the case that w, k = ¢

w, i E=O ¢ iff there exists ¢ < j < n such that: w,j = ¢
w,i EO¢ iff for all ¢ < j < n it is the case that: w,j = ¢
wE= ¢ iff w,lEde

4.1 Automata and LTL formulas (7 points)

Consider the automaton A (with states A, B, C') in Figure [} over the alphabet
{p, q}. Notice that A is the initial state and B is final.

N N
A@L.L%)

Figure 1: Automaton A over alphabet {p,¢}.

For each of the following LTL formulas say whether every accepting run of A
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

(1) AEOp

14

(2) AFE0q

15

(5) AE0O(pUg)

4.2 Automata-based model checking (8 points)
Show that A = p = 0 ¢ using automata-based model checking as follows.

Property automaton (4 points). Construct an automaton F that accepts
precisely the words that satisfy —(p = 0 ¢), that is, the complement of the
property we want to verify.

16

Intersection automaton (4 points). Construct the intersection automaton
A x F that accepts precisely the words accepted by both A and F and show
that A x F does not accepts any words.

17

5 Real Time Verification (12 points)

Recall the semantics of (a subset of) MTL over finite timed words with alphabet
P and time domain T. For a timed word

w = [o(1),t(D)][e(2),8(2)] - - [o(n), t(n)] € (P x T)*

with n > 0 and a position 1 < i < n the satisfaction relation |= is defined
recursively as follows for p € P and J an interval of T with integer endpoints.

w,iEp iff p=o(i)

w,i = ¢ iff w,ifE P

w,i|:¢1/\¢2 iff w,i}zqi)l and ’LU,Z"ZQZ)Q

w,i =0, ¢ iff there exists i < j < n such that: ¢(j) —¢(i) € J and w,j E ¢
w,i =0, ¢ iff foralli<j<n:ift(j)—t() € Jthenw,j=¢

wkE ¢ iff w,lEe¢

As time domain T, we will consider either the natural numbers N = {0, 1,2, ...}
or the nonnegative real numbers R>g.

5.1 MTL semantics (4 points)
(1) Are the MTL formulas ¢ and t)s:

Py £ 0[1’1] (0[1,1] (p))
Py £ 0[272] (p)

equivalent over time domain IN? If they are, show that their semantics
imply each other; if they are not, provide a timed word which is satisfied
by one formula and not satisfied by the other.

18

(2) Does the answer to the previous question change over the time domain
R>¢? Explain why it does or does not change.

5.2 Timed automata and MTL formulas (8 points)

In this section, we take R>¢ as the time domain T. Consider the timed automa-
ton T (with locations A, B,C') in Figure [2| over the alphabet {p,q} and with
clocks x and y. Notice that A is the initial location and C' is final.

D p q
Tz <1 y<l r<l1

Q x> 2 Q

0«
q@;l)_ﬂ)

Figure 2: Timed automaton 7 over alphabet {p, ¢} with clocks = and y.

For each of the following MTL formulas say whether every accepting run of 7
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

1) TE 00,24

19

(2) TEjg (0(1,00)1’)

20

	Axiomatic semantics (18 points)
	Program semantics (2 points)
	Partial correctness (15 points)
	Termination (1 point)

	Separation Logic (15 points)
	Predicate Satisfaction (6 points)
	Code Verification (9 points)

	Data flow analysis (10 points)
	Model Checking (15 points)
	Automata and LTL formulas (7 points)
	Automata-based model checking (8 points)

	Real Time Verification (12 points)
	MTL semantics (4 points)
	Timed automata and MTL formulas (8 points)

