ETHZ D-INFK

Prof.

Dr. B. Meyer, Dr. C. A. Furia, Dr. S. Nanz Software Verification

Software Verification — Exam

ETH Ziirich

16 December 2013

Surname, first name: ...

Student NUMDEr: ...

I confirm with my signature that I was able to take this exam under regular
circumstances and that I have read and understood the directions below.

SIZNALUTE: ..ooiiiiiiiiiiii e

Directions:

Exam duration: 1 hour 45 minutes.

Except for a dictionary you are not allowed to use any supplementary
material.

All solutions can be written directly on the exam sheets. If you need more
space for your solution ask the supervisors for a sheet of official paper. You
are not allowed to use other paper. Please write your student number on
each additional sheet.

Only one solution can be handed in per question. Invalid solutions need
to be crossed out clearly.

Please write legibly! We will only correct solutions that we can read.

Manage your time carefully (take into account the number of points for
each question).

Please immediately tell the exam supervisors if you feel disturbed during
the exam.

Good luck!

Question

Available points

Your points

1) Axiomatic semantics 12
2) Separation logic 10
3) Abstract interpretation 10
4) Model checking 10
5) Real time verification 10
Total 52

[This page is intentionally left blank.]

1 Axiomatic semantics (12 points)

Consider the following annotated program, where A is an array (indexed from 1)
of generic element type G, n is an integer variable storing A’s size, ¢ and j are
two other integer variables, and swap (A, i, j) is a call to routine swap whose
effect is to swap the elements at indexes ¢ and j in array A (provided ¢ and j
are valid indexes), and old A[n — k + 1] in the postcondition refers to the value
of the expression A[n — k + 1] in the precondition.

{n>20}
1 from
2 1:=1
3 ji=mn
4 until j < i loop
5 swap (A, i, j)
6 1 =1+ 1
7 ji=75-1
8 end

{VEk(l<k< n= Alk] = old A[n - k + 1])}

1.1 Program semantics (2 points)

Formalize the effect of a generic call swap (A, i, j) by providing assertion for-
mulae P and @ such that both

o {P}swap (A, 4, j) {x+1 A x#j A Ala] =8 } and

o {Qtswap (A, 4, 7)) {z=4 A i#j A A2 =7}

are valid Hoare triples. You can assume a variable n denotes A’s size.

Solution:
In both cases, P and () must require that i and j be valid indices within A.

e In the first triple, calling swap has no effect on the value A[z] since z is
neither ¢ nor j; therefore Pis 1< i< n A 1<j<n A x#i A %] A A
[z] = 8. The first two conjuncts encode the requirement that i and j be
within bounds.

e In the second triple, swap switches A[z] (which is the same as A[j]) with
what was previously in A[i]; therefore Qis 1< i< n A 1<j<n A z=
j A i#j A A[)) = 7. Asin P, the first two conjuncts encode the require-
ment that ¢ and 7 be within bounds.

1.2 Partial correctness (10 points)

Using the following (partial) proof rule for swap (where z is an integer variable,
B an integer array, and m denotes B’s size):

{1<2x<m AV Ek(l<sk<zr = B[kl =o0ld Blm-k+1]) }
swap (B, z, m - x + 1)
{1<z<m AV k(l1<k<z = Bl[kl=old Bjm - k+ 1)) }

prove that the triple (precondition, program, postcondition) introduced in the
previous page is a theorem of Hoare’s axiomatic system for partial correctness.
In other words, prove the program correct with respect to the given specification.

Solution:
1{n>0}
2 { True}
3 from
4 {1$1/\n§n/\n:n—1—|—1/\
5 VE(1<k<1l= Alfl=old A[n-k+ 1)) }
6 =1
7 {1£i/\ n<n A n=n-i+1 A
8 VE(l<k< i = A[k] =old A[n - k+ 1]) A
9 Vk(n<k<n= Alk] =old A[n - k+ 1)) }
10 g

=n
11 {1SiAan/\j:n—i+1/\

12 k(l<k< i = Al =old A[n-k+ 1]) A
13 Vk(j<k£ n=— Akl =old A[n-k+ 1]) }
14 until j < 7 loop

15 {(1<i<j<naj=n-i+ln

16 VEk(l<k<i=— Al =old A[n-k+ 1]) A
17 Vk(G<k< n= Akl =old A[n - k+ 1]) }
18 {1<i<n A lg<n A

19 2<i+2<j<n+1 Aj=n-i+1A

20 Vi(1<k<i= Akl =old A[n-k+1]) A
21 VEk(<k< n= Ak =old A[n - k+1]) }
22 swap (A, i, j)

23 {1<i4+1<j-1<nAj-1l=n-i-1+1A~h
24 VE(<k< i = Akl =old A[n - k+ 1]) A
25 ViEk(G<k< n= Alfl =old A[n - k+ 1)) }
26 t:=1+1

27 {1<i<j-1<nAj-1=n-i4+2 A

28 VEk(1<k<i = Al =old A[n-k+ 1]) A
29 VE(<k< n=— Akl =old A[n-k+1]) }
30 ji=j -1

31 {1l<i<j<snAj=n-i+1Aa

32 VEk(l<k<i = Al =old A[n-k+ 1]) A
33 VEk(G<k< n= Akl =old A[n - k+ 1]) }
34 end

35{Vk(l<k< n=—> A[=old Aln - k+ 1]) }

2 Separation Logic (10 points)

2.1 Predicates and Constructing States (4 points)

A well-formed binary tree t is defined by the grammar:

t=mn | (t,t2)

i.e. t can be either a leaf, which is a single number n, or an internal node with
a left subtree ¢; and a right subtree t5. Consider the following definition of the
inductive predicate tree(t,i) which asserts that ¢ is a pointer to a well-formed
binary tree t:

tree(n,i) £ i—n
tree((t1,t2),%)

Il>

7. i 1,1+ tree(ty,l) » tree(ta,r)

Using these definitions, draw state diagrams (i.e. stores and heaps) satisfying
each of the following formulae:

(a). tree((8,8),z)

() ()
Store Heap
X > > 8
~— @@ 8
& J

(b). tree(b,x) Atree(b,y)

(Store | (Heap
X /‘; 5
y L
(c). tree(((3,2),1),x)
(Store | (Heap
X >
~——
3

2.2 Semantics of Triples (2 points)
Why is the following triple not valid?

{true} [z]:=7 {true}

Sample solution: A valid triple {pre} P {post} in separation logic asserts that
if program P is executed on a state (constituting a store and heap) that satisfies
pre, then it will not fault, and if it terminates, the resulting state satisfies post.
The triple {true} [z]:= 7 {true} is not valid because the program could fault
on a state satisfying the precondition. For example, s,hemp E true, where s
is an arbitrary store defined at least for x, and hemp is the empty heap; but
the program [z]:= 7 will fault on s, hemp because it is attempting to mutate a
non-existent location in the heap.

2.3 Pointer Proof (4 points)

Give a proof outline for the following triple, using the axioms and inference rules
of separation logic:

{emp}
x := cons(3,4);
z = [x+1];
y := cons(z,3);
[x+1] := [y+1];
dispose(y+1);

[y~ 4+am3,3)

Sample solution:

{emp}

x := cons(3,4);
{x |-> 3,4}

z = [x+1];

{x |-> 3,4 and z = 4}
y := cons(z,3);

{y I-> 2,3 * x |-> 3,4 and z = 4}
[x+1] := [y+1];

{y I-> 2,3 * x |-> 3,3 and z = 4}
dispose(y+1);

{y |->z*x |-> 3,3 and z = 4}

{y I->4 % x |-> 3,3}

[This page is intentionally left blank.]

3 Abstract interpretation (10 points)

Consider the following control flow graph of a program fragment, annotated
with labels 1,2,...,7. All variables are of type INTEGER.

X := 23
|2

y = 42
—,l3

6 7
y > 1 X 1=y + 1——
4
X 1= xXx + 1

The goal of this exercise is to use abstract interpretation to perform parity
analysis, i.e. to determine which variables are even or odd. The computation in
the abstract domain is done in the complete lattice Parity

VAN
E 0
N/
1

where T represents all integers, E even integers, O odd integers, and L the empty
set.

(1) Specify the abstract operations @ and © on Parity that correspond to
integer addition and subtraction, respectively.

1
1

Qg +|&

sl ey
O +H|O
— = A |

The operation © represents the same function as @.

(2) Define an equation system to compute the values of the abstract states
A; : {x,y} — Parity at each program point i € {1,2,...,7}.

10

A = [xeT,y~T]
A2 = A1[X'—>O]
Az = Ag[y = EJuAs[y = As(y) e E]

A4 = A3
A5 = A4[X L=d A4 (X) ® O]
As = A3

A7 = Aglx~ Ag(y) @ O]

(3) Compute the fixed point of your equation system by iteration and display
the effect of each iteration step in the table below.

In the table, it suffices to enter the pair of the abstract values for x and y
when they are initialized or recomputed. For example, if in step 3 of the
iteration, at program point ¢ the variable x gets the value T and y has the
value O, enter TO in row A; column 3; if in the following iteration, A; does
not change, leave row A; column 4 empty.

lolt] 2] 3] 4[5]6[7]8]09]

Ay || LL | TT TT
Ao || LL oT oT
Az || LL OF TE TE
Ay || 1L OF TE TE
As || 1L EE TE | TE
Ag || L1 OF TE TE
A7 || LL OF OF | OF

11

4 Model Checking (10 points)

Recall the semantics of LTL over finite words with alphabet P. For a word
w = w(1)w(2)--w(n) e P* with n > 0 and a position 1 < i < n the satisfaction
relation E is defined recursively as follows (where p,q € P).

w,iEp iff p=w(i)

w,1E - iff w,ie

w,iE G APy M w,iE¢; and w,iE ¢
w, i = X iff i<nandw,i+1E¢

w,i k= ¢ Ugpe iff there exists i < j <n such that: w,j = ¢
and for all ¢ < k < j it is the case that w,k & ¢

w,iE O ¢ iff there exists i < j <n such that: w,jE ¢
w,iEO ¢ iff for all i < j <m it is the case that: w,jE ¢
wE Q@ iff w,le¢

4.1 Automata and LTL formulas (5 points)

Consider the automaton A (with states A, B, C, D) in Figure |1} over the alpha-
bet {p,q}. Notice that A is the initial state, A and D are final states, and the

automaton is nondeterministic.
p
OWO
p ~__
/ q
OB

N

p
pC@Dq

Figure 1: Automaton .4 over alphabet {p, ¢}.

For each of the following LTL formulas say whether every accepting run of A
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

(1) Aeo(op)
No: the word w = pq is accepted by A but does not satisfy (< p) because
& p is false in the last position.

(2) A= O(True) = <&(p)

Yes, in fact: (1) O(True) is false for the empty word e (accepted by A),
and hence € vacuously satisfies the whole LTL formula; (2) every non-empty
word w accepted by A is such that p occurs in the first position, and hence
w satisfies & p.

3) Aep = (pU(pVvq))

12

Yes: every word w accepted by A such that p holds in the first position (i.e.,
every accepted word other than the empty word €) also satisfies pU (p Vv q)
trivially in the first position.

(4) Ae(p A Xq) = XXO(q)

No: the word w = pqpp is accepted by A, it satisfies the antecedent p A Xgq,
but it does not satisfy the consequent XX (g) because g does not occur
from the third position until the end of w.

(3) ArO(p) =p

Yes: p holds in the first position in every word w accepted by by A such
that p holds eventually (i.e., every accepted word other than the empty
word €).

4.2 Automata-based model checking (5 points)
Consider the LTL formula:

¢ = O(p) A (p== XX(O(False)))

Property automaton. Construct an automaton F that accepts precisely the
words that satisfy ¢.

Solution:

Since XX(O(False)) unsatisfiable, ¢ is equivalent to &(p) A =p. F can be built
as follows:

q b,q

8 ()
-0 ()

13

5 Real Time Verification (10 points)

Recall the semantics of MTL over finite timed words with alphabet P and time
domain Ry (the nonnegative real numbers). For a timed word

w=[o(1),1(1)][e(2),t(2)][o(n),t(n)] € (P xRx0)”

with n > 0 and a position 1 < ¢ < n the satisfaction relation & is defined recur-
sively as follows for p € P and J an interval of Ryy with integer endpoints.
w,iEp iff p=0o(i)
W, i E —p iff w,idto
w,iE QL NPy iff w,iE ¢ and w,iE ¢o
w,iE O @ iff there exists ¢ < j < n such that: ¢(j) —t(i) € J and w,j E ¢
w,iE=0; ¢ iff foralli<j<n: if t(§)-t(¢) € J then w,j = ¢
w,itE ;U ;¢ iff there exists i < j <n such that: t(j) —¢(3) € J, w,j & @2,
and, forall i <k <j, w, k= ¢
wE ¢ iff w,lE¢

5.1 Timed automata and MTL formulae (5 points)

Consider the timed automaton 7 (with locations A, B,C) in Figure [2] over the
alphabet {p,q} and with clocks 2 and y. Notice that A is the initial location
and B is final.

q
r<1
» y:=0
O=E__(©
— _—
~_
p
y<1
x:=0

Figure 2: Timed automaton T over alphabet {p, ¢} with clocks = and y.

For each of the following MTL formulae say whether every accepting run of T
satisfies the formula. If it does, argue informally (but precisely) why this is the
case; if it does not, provide a counterexample.

1) Te <>(()’1) p

No: the timed word [p, 1] is accepted by T but it does not satisfy Sy P
because p does not occur strictly within absolute time 1.

(2) T =5, (p = O01)4)
No: the timed word [p,0.1] is accepted by T but it does not satisfy
D[O)l)(p = O.) q) because ¢ never occurs.

14

(B) Tr (p Ut q) = Q2P

Yes: if pU(O’I) q holds initially in some word accepted by T, then there must
be exactly one occurrence of ¢ at some absolute time 0 < ¢ < 1 preceded
by an occurrence of p. At time ¢ the automaton is therefore at location
C with clock y reset to 0; for the word to be accepted, there must exist
another occurrence of p (to go back to location B), and that must be within
absolute time ¢ + 1 (excluded). Thus, C,2)P

(4) TE D[0,1](_‘Q)

No: the timed word [p,0.1][g,0.2] [p,0.3] is accepted by T but it does not
satisfy Oy, 1](ﬁq) because g occurs once over [0,1].

5.2 Emptiness check of timed automata (5 points)

Construct the region automaton reg(T) for the timed automaton 7 in Figure
Recall that reg(7T) is a finite-state automaton whose states are labeled with a
pair (¢, R), where ¢ is a location of T (4, B, or C), and R is a region, that is
an equivalence class of clock valuations specified by a system of equalities and
inequalities involving the clocks z and y. Make sure to also mark the initial and
final states of reg(7T).

B
r=0,0<y<1
— A _— B _ ¢
rz=y=0 rz=0,y=1 O<x<l,y=0
B
z=0,y>1

15

	Axiomatic semantics (12 points)
	Program semantics (2 points)
	Partial correctness (10 points)

	Separation Logic (10 points)
	Predicates and Constructing States (4 points)
	Semantics of Triples (2 points)
	Pointer Proof (4 points)

	Abstract interpretation (10 points)
	Model Checking (10 points)
	Automata and LTL formulas (5 points)
	Automata-based model checking (5 points)

	Real Time Verification (10 points)
	Timed automata and MTL formulae (5 points)
	Emptiness check of timed automata (5 points)

