
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

Problem Sheet 2: AutoProof

Chris Poskitt and Julian Tschannen
ETH Zürich

“Beware of bugs in the above code; I have only proved it correct, not tried it.”
– Donald E. Knuth

Starred exercises (∗) are more challenging than the others.

1 Background

This exercise class is concerned with the AutoProof tool [2, 3], a static verifier for programs
written in (a subset of) the object-oriented language Eiffel. The tool takes an Eiffel program—
annotated with contracts (i.e. executable pre-/postconditions, class invariants, intermediate
assertions)—and automatically attempts to verify the correctness of the program with respect
to its contracts.

AutoProof

Boogie

SMT Solver

Eiffel program

Eiffel errors

Boogie
file

Boogie
errors

Verification
conditions

Valid
/ invalid

User

Figure 1: The AutoProof workflow

The tool is built on top of Boogie [1],
an automatic verification framework developed
by Microsoft Research. AutoProof translates
Eiffel programs and their contracts (i.e. their
proof obligations) into the front-end language
of Boogie—an intermediate verification language
encoding the semantics of the source program
in terms of primitive constructs, and prescrib-
ing what it means for the source program to be
correct. The Boogie tool then translates this in-
termediate program into a set of verification con-
ditions; logical formulae which if valid, indicate
the correctness of the source program. The va-
lidity of these verification conditions is checked
automatically by an SMT solver (currently Z3).

This workflow is summarised in Figure 1. We
will only be interacting with AutoProof itself in
this exercise class, but it is helpful to be roughly
aware of how it works and what translations it is
performing (in a later class, we will look at the
Boogie framework directly).

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

2 Exercises

The Eiffel programs for the following exercises are all available online in a web-based interface
to AutoProof. Simply follow the given links for each exercise, edit the code and contracts in
your browser, then hit the “Verify” button to run the tool.

Important: the web interface to AutoProof does not permanently save your changes, so please
make sure to save local copies of your solutions.

i. Consider the class WRAPPING COUNTER in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task1

The method increment increases its integer input by one, except if the input is 59, in
which case it wraps it round to 0. Verify the class in AutoProof without changing the im-
plementation, i.e. adding only the necessary preconditions. Strengthen the postcondition
further as suggested in the comments, and check that the proof still goes through.

ii. In the axiomatic semantics problem sheet, we encountered several simple program speci-
fications expressed as Hoare triples. Using the class AXIOMATIC SEMANTICS in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task2

write some simple contract-equipped methods and show the following in AutoProof:

(A) |= {x = 21 ∧ y = 5} skip {y = 5}
(B) |= {x > 10} x := 2 ∗ x {x > 21}
(C) |= {x ≥ 0 ∧ y > 1} while x < y do x := x ∗ x {x ≥ y}
(D) |= {x = 5} while x > 0 do x := x + 1 {x < 0}
(E) |= {x = a ∧ y = b} t := x; x := x + y; y := t {x = a + b ∧ y = a}
(F) |= {in + m = 250} while (i > 0) do m := m + n; i := i− 1 {in + m = 250}

Hint: Eiffel does not offer a while construct. Try experimenting with from-until-loop in-
stead, as well as if-then-else with recursion (note that recursive calls should be surrounded
by wrap and unwrap so that the verifier checks the class invariant—see the code comments).

iii. Consider the class MAX IN ARRAY in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task3

What does the max in array method do? Prove the class correct in AutoProof by deter-
mining a suitable precondition and loop invariant.

Hint: you might find Eiffel’s across-as-all loop construct1 helpful for expressing loop
invariants.

1See: http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/

2

http://cloudstudio.ethz.ch/e4pubs/#sv-task1
http://cloudstudio.ethz.ch/e4pubs/#sv-task2
http://cloudstudio.ethz.ch/e4pubs/#sv-task3
http://bertrandmeyer.com/2010/01/26/more-expressive-loops-for-eiffel/


ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

iv. (∗) Consider the class SUM AND MAX in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task4

What does the method sum and max do? What can you prove about it using AutoProof?

v. (∗∗) Consider the class LCP in:

http://cloudstudio.ethz.ch/e4pubs/#sv-task5

The method lcp implements a Longest Common Prefix (LCP) algorithm2 with input and
output as follows:

Input: an integer array a, and two indices x and y into this array.

Output: length of the longest common prefix of the subarrays of a
starting at x and y respectively.

What can you prove about the class in AutoProof?

References

[1] K. Rustan M. Leino. This is Boogie 2. Technical report, 2008. http://research.

microsoft.com/en-us/um/people/leino/papers/krml178.pdf.

[2] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Automatic ver-
ification of advanced object-oriented features: The AutoProof approach. In Tools for
Practical Software Verification - LASER 2011, International Summer School, volume 7682
of LNCS, pages 134–156. Springer, 2012. http://se.inf.ethz.ch/people/tschannen/

publications/TschannenLASER11.pdf.

[3] Julian Tschannen, Carlo A. Furia, Martin Nordio, and Bertrand Meyer. Program checking
with less hassle. In Proc. Verified Software: Theories, Tools, Experiments (VSTTE 2013),
volume 8164 of LNCS, pages 149–169. Springer, 2014. http://se.inf.ethz.ch/people/

tschannen/publications/tfnm-vstte13.pdf.

2From the FM 2012 verification challenge.

3

http://cloudstudio.ethz.ch/e4pubs/#sv-task4
http://cloudstudio.ethz.ch/e4pubs/#sv-task5
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://research.microsoft.com/en-us/um/people/leino/papers/krml178.pdf
http://se.inf.ethz.ch/people/tschannen/publications/TschannenLASER11.pdf
http://se.inf.ethz.ch/people/tschannen/publications/TschannenLASER11.pdf
http://se.inf.ethz.ch/people/tschannen/publications/tfnm-vstte13.pdf
http://se.inf.ethz.ch/people/tschannen/publications/tfnm-vstte13.pdf

	Background
	Exercises

