
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

Problem Sheet 3: Separation Logic

Sample Solutions

Chris Poskitt∗

ETH Zürich

Starred exercises (∗) are more challenging than the others.

1 Separation Logic Assertions

i. (a) Does not hold. Expresses that the heap has exactly one location, obtained by evalu-
ating i; but there are several other locations in the heap.

(b) Does not hold. Expresses that the heap can be split into two disjoint parts: one with
the location obtained by evaluating i, another disjoint one by evaluating j, and the
same contents at both. Not only are there additional locations in the heap, but i and
j are evaluated by the store to the same location (i.e. they do not denote two disjoint
locations in the heap).

(c) Holds. The heap can be divided into two disjoint portions: one portion with exactly
the location given by evaluating i; the other portion being the rest of it. The former
satisfies i 7→ z and the latter satisfies true.

(d) Holds. The first conjunct is true for the reason in (c); the second is true because the
store evaluates i and j to the same location. For the third conjunct, we can certainly
split the heap into three disjoint parts: one satisfying z 7→ 1, one satisfying z+1 7→ 2,
and finally one being the remainder of the heap which of course will satisfy true.

(e) Does not hold. It asserts that i 7→ x and j 7→ x′ are disjoint parts of the heap, but i
and j both evaluate to the same location in the heap.

(f) Holds. Every heap can be split into two disjoint parts: one, the original heap (which
satisfies true), and the other, the empty heap (which satisfies emp).

ii. (a) p implies p ∗ p is not valid. Counterexample: take p to be x 7→ a. A state satisfying
this assertion (i.e. that there is exactly one location) will not satisfy x 7→ a ∗ x 7→ a.

(b) p ∗ q implies [(p ∧ q) ∗ true] is not valid. Counterexample: take q to be ¬p. A heap
can satisfy p ∗ ¬p because p might hold in one disjoint part, and ¬p in another. But
there is no part of any heap that will satisfy both p and ¬p, and so [(p ∧ ¬p) ∗ true]
cannot be satisfied.

∗Some exercises based on those previously set by Stephan van Staden.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

2 Separation Logic Proofs

i. Proof outline using the small axioms, frame rule, consequence rule, and the following
derived axiom:

` {e 7→ e′} x := [e] {e 7→ e′ ∧ x = e′}
(provided that x does not appear free in e, e′).

{emp}
l := cons(1)

{l 7→ 1}
{l 7→ 1 ∗ emp}

r := cons(2, 3)

{l 7→ 1 ∗ r 7→ 2, 3}
temp1 := [r + 1]

{l 7→ 1 ∗ r 7→ 2, 3 ∧ temp1 = 3}
temp2 := [l]

{l 7→ 1 ∗ r 7→ 2, 3 ∧ temp1 = 3 ∧ temp2 = 1}
[l] := temp1

{l 7→ temp1 ∗ r 7→ 2, 3 ∧ temp1 = 3 ∧ temp2 = 1}
[r] := temp2

{l 7→ temp1 ∗ r 7→ temp2, 3 ∧ temp1 = 3 ∧ temp2 = 1}
{l 7→ 3 ∗ r 7→ 1, 3 ∧ temp1 = 3 ∧ temp2 = 1}
{l 7→ 3 ∗ r 7→ 1, 3}

A possible depiction of the post-state is given below:

Store Heap

l

r

3

1 3

temp1 temp2

3 1

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

ii. A possible proof outline:

{list(a :: as, i)}
{∃j. i 7→ a, j ∗ list(as, j)}
{i 7→ a, j ∗ list(as, j)}
dispose(i)

{i+ 1 7→ j ∗ list(as, j)}
k := [i+ 1]

{i+ 1 7→ j ∗ list(as, j) ∧ k = j}
dispose(i+ 1)

{list(as, j) ∧ k = j}
{∃j. list(as, j) ∧ k = j}
{list(as, k)}

i := k

{list(as, i)}

iii. (∗) Here is a possible procedure for CopyTree:

procedure CopyTree(p,q)

if isAtom(p) then

q := p;

else

local p1, p2, q1, q2;

p1 := [p];

p2 := [p+1];

CopyTree(p1,q1);

CopyTree(p2,q2);

q := cons(q1,q2);

end

end

We focus on the most crucial part of the program, i.e. the code in the else block. The
following proof outline uses the small axioms, frame rule, rule of consequence, as well as:

` {tree(t1, τ)} CopyTree(t1, t2) {tree(t1, τ) ∗ tree(t2, τ)}

as an inductively assumed axiom (for recursive calls of the CopyTree procedure).

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

{tree(p, τ)}
{∃x, y, τ1, τ2. p 7→ x, y ∗ tree(x, τ1) ∗ tree(y, τ2) ∧ τ = 〈τ1, τ2〉}

p1 := [p]

{∃y, τ1, τ2. p 7→ p1, y ∗ tree(p1, τ1) ∗ tree(y, τ2) ∧ τ = 〈τ1, τ2〉}
p2 := [p+ 1]

{∃τ1, τ2. p 7→ p1, p2 ∗ tree(p1, τ1) ∗ tree(p2, τ2) ∧ τ = 〈τ1, τ2〉}
CopyTree(p1, q1)

{∃τ1, τ2. p 7→ p1, p2 ∗ tree(p1, τ1) ∗ tree(q1, τ1) ∗ tree(p2, τ2) ∧ τ = 〈τ1, τ2〉}
CopyTree(p2, q2)

{∃τ1, τ2. p 7→ p1, p2 ∗ tree(p1, τ1) ∗ tree(q1, τ1) ∗ tree(p2, τ2) ∗ tree(q2, τ2) ∧ τ = 〈τ1, τ2〉}
q := cons(q1, q2)

{∃τ1, τ2. p 7→ p1, p2 ∗ tree(p1, τ1) ∗ tree(q1, τ1) ∗ tree(p2, τ2) ∗ tree(q2, τ2) ∗ q 7→ q1, q2 ∧ τ = 〈τ1, τ2〉}
{∃τ1, τ2. p 7→ p1, p2 ∗ tree(p1, τ1) ∗ tree(p2, τ2) ∗ q 7→ q1, q2 ∗ tree(q1, τ1) ∗ tree(q2, τ2) ∧ τ = 〈τ1, τ2〉}
{tree(p, τ) ∗ tree(q, τ)}

4


	Separation Logic Assertions
	Separation Logic Proofs

