
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

Problem Sheet 5: Program Proofs

Sample Solutions

Chris Poskitt
ETH Zürich

Starred exercises (∗) are more challenging than the others.

1 Axiomatic Semantics Recap

i. I propose the axiom:

` {p} havoc(x0, . . . , xn) {∃xold
0 , . . . , xold

n . p[xold
0 /x0, . . . , x

old
n /xn]}

Essentially it is the same as the forward assignment axiom (see Problem Sheet 1), but
without conjuncts about the new values of each xi, since we do not know what they will
be after the execution of havoc.

ii. Below is a possible program and proof outline:

{x ≥ 0}
{x! ∗ 1 = x! ∧ x ≥ 0}

y := 1;

{x! ∗ y = x! ∧ x ≥ 0}
z := x;

{z! ∗ y = x! ∧ z ≥ 0}
while z > 0 do

{z > 0 ∧ z! ∗ y = x! ∧ z ≥ 0}
{(z − 1)! ∗ (y ∗ z) = x! ∧ (z − 1) ≥ 0}

y := y ∗ z;

{(z − 1)! ∗ y = x! ∧ (z − 1) ≥ 0}
z := z − 1;

{z! ∗ y = x! ∧ z ≥ 0}
end

{¬(z > 0) ∧ z! ∗ y = x! ∧ z ≥ 0}
{y = x!}

Observe that the loop invariant z! ∗ y = x! ∧ z ≥ 0 is key to completing the proof.

1

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

iii. A possible inference rule would be:

` {p} A {inv} ` {inv ∧ ¬b} C {inv}
[from-until]

` {p} from A until b loop C end {inv ∧ b}

iv. A possible proof outline is the following:

{ n >= 0 }
from

k := n
found := False

{ 0 <= k <= n ∧ (found =⇒ 1 <= k <= n ∧ A[k] = v) }
until found or k < 1 loop
{ 1 <= k <= n ∧ ¬ found ∧ (found =⇒ 1 <= k <= n ∧ A[k] = v) }
if A[k] = v then
{ A[k] = v ∧ 1 <= k <= n ∧ ¬ found }
{ 0 <= k <= n ∧ 1 <= k <= n ∧ A[k] = v }
found := True
{ 0 <= k <= n ∧ (found =⇒ 1 <= k <= n ∧ A[k] = v) }

else
{ A[k] /= v ∧ 1 <= k <= n ∧ ¬ found }
{ 1 <= k <= n + 1 ∧ (found =⇒ 2 <= k <= n + 1 ∧ A[k − 1] = v) }
k := k − 1
{ 0 <= k <= n ∧ (found =⇒ 1 <= k <= n ∧ A[k] = v) }

end
{ 0 <= k <= n ∧ (found =⇒ 1 <= k <= n ∧ A[k] = v) }

end
{ (found ∧ 1 <= k <= n ∧ A[k] = v) ∨ (¬found ∧ k = 0) }

{(found =⇒ 1 <= k <= n ∧ A[k] = v) ∧ (¬found =⇒ k < 1)}

Again, note the importance of determining a strong enough loop invariant, i.e.

0 ≤ k ≤ n ∧ (found =⇒ 1 ≤ k ≤ n ∧A[k] = v)

for the proof to be able to go through. Note also that we can apply backwards reasoning, as
usual, when the assignment involves a Boolean value (in this case, found[True/found] ≡
True).

v. Assume that ` {WP[P, post]} P {post} and |= {p} P {q}. From the definition of |=,
executing P on a state satisfying p results in a state satisfying q. By definition, WP[P, post]
expresses the weakest requirements on the state for P to establish q; hence p is either
equivalent to or stronger than WP[P, post], and p⇒WP[P, post] is valid. Clearly, q ⇒ q
is also valid, so we can apply the rule of consequence [cons] and derive the result that
` {p} P {q}.
Note: this property is called relative completeness, i.e. all valid triples can be proven in the
Hoare logic, relative to the existence of an oracle for deciding the validity of implications
(such as those in [cons]).

2

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

2 Separation Logic Recap

i. There are instances of s, h and p such that the state satisfies the first assertion. For
example,

s, h |= x 7→ x ∗ ¬x 7→ x

if s(x) = 5, h(5) = 5, and h is defined for no other values. However, x = y ∗ ¬(x = y) is
not satisfiable since x, y denote values in the store, which is heap-independent.

ii. (a) Satisfies.

(b) Does not satisfy (the heap only contains two locations).

(c) Does not satisfy (the heap contains more than one location).

(d) Satisfies. The variables x and y are indeed evaluated to the same location by the
store. The second conjunct expresses that there is a location in the heap determined
by evaluating y (clearly true).

(e) Satisfies.

iii. A proof outline is given below:

{emp}
x := cons(5, 9);

{x 7→ 5, 9}
y := cons(6, 7);

{x 7→ 5, 9 ∗ y 7→ 6, 7}

{∃xold. x 7→ 5, 9 ∗ y 7→ 6, 7 ∧ xold = x}
x := [x];

{∃xold. xold 7→ 5, 9 ∗ y 7→ 6, 7 ∧ x = 5}
[y + 1] := 9;

{∃xold. xold 7→ 5, 9 ∗ y 7→ 6, 9 ∧ x = 5}
dispose(y);

{∃xold. xold 7→ 5, 9 ∗ y + 1 7→ 9 ∧ x = 5}

and a depiction of the final state:

Store Heap

x

y

5 5 9

9

3

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

iv. A proof outline is given below:

{tree (1, t) i}
{∃l, r · i 7→ l, r ∗ tree 1 l ∗ tree t r}

x := [i];

{∃r · i 7→ x, r ∗ tree 1 x ∗ tree t r}
[i] := 2;

{∃r · i 7→ 2, r ∗ tree 1 x ∗ tree t r}
y := [i + 1];

{i 7→ 2, y ∗ tree 1 x ∗ tree t y}
dispose i;

{(i + 1) 7→ y ∗ tree 1 x ∗ tree t y}
{(i + 1) 7→ y ∗ x 7→ 1 ∗ tree t y}

dispose x;

{(i + 1) 7→ y ∗ tree t y}
dispose (i + 1);

{tree t y}

4

	Axiomatic Semantics Recap
	Separation Logic Recap

