
ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

Problem Sheet 5: Program Proofs

Chris Poskitt
ETH Zürich

1 Axiomatic Semantics Recap

This section provides some additional questions on Hoare logic. The proof rules are given again
in Figure 1.

i. Devise an axiom for the command havoc(x0, . . . , xn), which assigns arbitrary values to the
variables x0, . . . , xn.

ii. Write a program that computes the factorial of a natural number stored in variable x and
assigns the result to variable y. Prove that the program is correct using our Hoare logic.

iii. Define a proof rule for the from-until-loop construct.

iv. Consider the following annotated program, where A is an array indexed from 1 of element
type G, n is an integer variable storing A’s size, k is another integer variable, v is a variable
of type G initialised to some fixed value, and found is a Boolean variable.

{ n >= 0 }
from

k := n
found := False

until found or k < 1 loop
if A[k] = v then
found := True

else
k := k − 1

end
end

{(found =⇒ 1 ≤ k ≤ n ∧A[k] = v) ∧ (¬found =⇒ k < 1)}
(a) What does the program do? In particular, what does the value of k represent on

exit?

(b) Prove the triple using the axioms and inference rules of Hoare logic.

v. Sarah Proofgood has successfully shown that given an arbitrary program P and postcon-
dition post, the triple:

{WP[P, post]} P {post}
can be proven in our Hoare logic, i.e. ` {WP[P, post]} P {post}. Here, WP[P, post] is
an assertion expressing the weakest (liberal) precondition relative to P and post; that is,
the weakest condition that must be satisfied for P to establish post (without guaranteeing
termination).

Using Sarah’s result, show that any valid triple |= {p} P {q} is provable in our Hoare
logic, i.e. ` {p} P {q}.

1



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

2 Separation Logic Recap

This section provides some additional practice on using separation logic. The small axioms and
frame rule of separation logic are given in Figure 2.

i. Are the following assertions satisfiable? Justify your answers.

p ∗ ¬p
x = y ∗ ¬(x = y)

ii. Consider the following program state:

ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2013

2 Separation Logic Recap

This section provides some additional practice on using separation logic. The small axioms and
frame rule of separation logic are given in Figure 4.

i. Are the following assertions satisfiable? Justify your answers.

p ⇤ ¬p

x = y ⇤ ¬(x = y)

ii. Consider the following program state:

Store Heap

x

y

Which of the following assertions does this state satisfy? For the assertions it does not
satisfy: why not?

(a) 9v. x 7! v ⇤ v 7! v

(b) 9v. x 7! v ⇤ v 7! v ⇤ y 7! v

(c) y 7!
(d) (x = y) ^ (y 7! ⇤ true)

(e) (x = y) ⇤ true

iii. Starting from precondition {emp}, apply the axioms and inference rules of separation
logic to derive a postcondition expressing exactly the contents of the store and heap at
termination (assume that x and y are the only variables). Then, depict this state using
the store and heap diagrams presented in the lectures.

x := cons(5,9);

y := cons(6,7);

x := [x];

[y+1] := 9;

dispose(y);

2

Which of the following assertions does this state satisfy? For the assertions it does not
satisfy: why not?

(a) ∃v. x 7→ v ∗ v 7→ v

(b) ∃v. x 7→ v ∗ v 7→ v ∗ y 7→ v

(c) y 7→
(d) (x = y) ∧ (y 7→ ∗ true)

(e) (x = y) ∗ true

iii. Starting from precondition {emp}, apply the axioms and inference rules of separation
logic to derive a postcondition expressing exactly the contents of the store and heap at
termination (assume that x and y are the only variables). Then, depict this state using
the store and heap diagrams presented in the lectures.

x := cons(5,9);

y := cons(6,7);

x := [x];

[y+1] := 9;

dispose(y);

2



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

iv. A well-formed binary tree t is defined by the grammar:

t , n | (t1, t2)

i.e. t can be either a leaf, which is a single number n, or an internal node with a left subtree
t1 and a right subtree t2. Consider the following definition of the inductive predicate
tree(t, i) which asserts that i is a pointer to a well-formed binary tree t:

tree(n, i) , i 7→ n

tree((t1, t2), i) , ∃l, r. i 7→ l, r ∗ tree(t1, l) ∗ tree(t2, r)

Using these definitions, give a proof outline of the following triple. There must be at least
one assertion between every two commands.

{tree((1, t), i)}
x := [i];

[i] := 2;

y := [i+1];

dispose(i);

dispose(x);

dispose(i+1);

{tree(t, y)}

3



ETHZ D-INFK
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification – Problem Sheets
Fall 2014

Appendix: Proof Rules

[ass] ` {p[e/x]} x := e {p}

[skip] ` {p} skip {p}

` {p} P {r} ` {r} Q {q}
[comp] ` {p} P ; Q {q}

` {b ∧ p} P {q} ` {¬b ∧ p} Q {q}
[if] ` {p} if b then P else Q {q}

` {b ∧ p} P {p}
[while] ` {p} while b do P {¬b ∧ p}

p⇒ p′ ` {p′} P {q′} q′ ⇒ q
[cons] ` {p} P {q}

Figure 1: A Hoare logic for partial correctness

` {e 7→ } [e] := f {e 7→ f}

` {e 7→ } dispose(e) {emp}

` {X = x ∧ e 7→ Y } x := [e] {e[X/x] 7→ Y ∧ Y = x}

` {emp} x := cons(e0, . . . , en) {x 7→ e0, . . . , en}

` {p} P {q}
` {p ∗ r} P {q ∗ r}

side condition: no variable modified by P appears free in r

Figure 2: The small axioms and frame rule of separation logic

4


	Axiomatic Semantics Recap
	Separation Logic Recap

