Problem Sheet 7: Program Slicing and Abstract Interpretation Sample Solutions

Chris Poskitt* ETH Zürich

Starred exercises (*) are more challenging than the others.

1 Program Slicing

i. Here is the program dependence graph for the program fragment (blue arrows are from the use-definition analysis; red arrows indicate control dependencies):

ii. For slicing criterion print(x), i.e. block 12, we get:

```
x := 0;
i := n;
while i > 0 do
    x := x + 1;
    i := i - 1;
end
print(x);
```

 $^{^*}$ These solutions are adapted from previous iterations of the course when Stephan van Staden was the teaching assistant.

For slicing criterion print(y), i.e. block 13, we get:

```
y := 0;
i := n;
while i > 0 do
    i := i - 1;
    j := i;
    while j > 0 do
        y := y + 1;
        j := j - 1;
    end
end
print(y);
```

2 Abstract Interpretation

i. We begin by mapping every variable to \bot (except for x, y in A_1 , which are respectively mapped to +, \top by assumption). Then, we iteratively update the (abstract) values of variables by applying the system of equations.

Abstract States	Ite	Iterations \longrightarrow								Final Values				
$A_1(x)$	+													+
$A_1(y)$	Т													Т
$A_2(x)$	1	+				Т				Т				Т
$A_2(y)$	1	+				+				Т				Т
$A_3(x)$	1		+				Τ				Т			Т
$A_3(y)$	1		+				+				Т			Т
$A_4(x)$	1			+				Т				Т		Т
$A_4(y)$	1			+				Т				Т		Т
$A_5(x)$	1				T				0				0	0
$A_5(y)$	1				+				+				Т	Т

- ii. The analysis is not very precise: it cannot prove that y is positive when the program fragment completes (i.e. at A_5).
- iii. (a) If we compute the factorial using a program that does not utilise the subtraction operator, then the result of the analysis becomes more precise:

$A_0 = [x \mapsto +, y \mapsto T, i \mapsto T]$
$A_1 = A_0[y \mapsto +]$
$A_2 = A_1[i \mapsto +] \sqcup A_4[i \mapsto A_4(i) \oplus +]$
$A_3 = A_2$
$A_4 = A_3[y \mapsto A_3(i) \otimes A_3(y)]$
$A_5 = A_2$

Abstract States	Final Values
$A_0(x)$	+
$A_0(y)$	Т
$A_0(i)$	Т
$A_1(x)$	+
$A_1(y)$	+
$A_1(i)$	Т
$A_2(x)$	+
$A_2(y)$	+
$A_2(i)$	+
$A_3(x)$	+
$A_3(y)$	+
$A_3(i)$	+
$A_4(x)$	+
$A_4(y)$	+
$A_4(i)$	+
$A_5(x)$	+
$A_5(y)$	+
$A_5(i)$	+

(b) (*) Perhaps changing the program for the analysis to work more precisely is not the best approach—let's try to improve the analysis! We'll try a so-called *relational analysis* with domain $\mathfrak{P}(\{-,0,+\}\times\{-,0,+\})$ to represent program states (x,y). A relational analysis is more precise because the domain can express dependencies, or relationships, between x and y.

We use the original version of the program fragment, but the new system of equations below:

$$\begin{split} A_1 &= \{(+,\text{-}),\, (+,0),\, (+,+)\} \\ A_2 &= \{(x,+) \mid (x,y) \in A_1\} \cup \{(x,y') \mid (x',y') \in A_4 \text{ and } x \in x' \ \ominus +\} \\ A_3 &= A_2 \cap \{(x,y) \mid x \in \{\text{-},\text{+}\} \text{ and } y \in \{\text{-},0,\text{+}\}\} \\ A_4 &= \{(x',y) \mid (x',y') \in A_3 \text{ and } y \in x' \ \otimes y'\} \\ A_5 &= A_2 \cap \{(0,y) \mid y \in \{\text{-},0,\text{+}\}\} \end{split}$$

and obtain a more precise analysis allowing us to deduce that **y** will be positive after execution finishes:

	Iterations								
A_1	{(+,-), (+,0), (+,+)}							{(+,-),(+,0),	
								(+,+)}	
A_2	Ø	{(+,+)}			$\{(+,+),(0,+),\ (-,+)\}$			{(+,+),(-,+),	
1 12	,	((1,1))			(-,+)}		•••	(0,+),(-,-)	
	Ø		((, ,))			{(+,+),		{(+,+),(-,+),	
A_3	Ø		{(+,+)}			(-,+)}	•••	(-,-)}	
	Ø			[(1)]				{(+,+),(-,-),	
A_4	Ø			{(+,+)}			•••	(-,+)}	
A_5	Ø							{(0,+)}	