ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Fall 2014

Problem Sheet 7: Program Slicing
and Abstract Interpretation
Sample Solutions

Chris Poskitt*
ETH Ziirich

Starred exercises (*) are more challenging than the others.

1 Program Slicing

i. Here is the program dependence graph for the program fragment (blue arrows are from
the use-definition analysis; red arrows indicate control dependencies):

12| print(x) |]3| print(y; |

ii. For slicing criterion print(x), i.e. block 12, we get:

x := 0;
i :=n;
while i > 0 do
=x + 1;
i=1i-1;
end
print (x);

*These solutions are adapted from previous iterations of the course when Stephan van Staden was the teaching
assistant.

ETHZ D-INFK

Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz

Software Verification — Problem Sheets

Fall 2014

For slicing criterion print(y), i.e. block 13, we get:

y := 0;
i :=n;
while i > 0 do
i:=1i-1;
j = 1;
while j > 0 do
y =y +t1
joi=3-1;
end
end
print(y);

2 Abstract Interpretation

i. We begin by mapping every variable to L (except for x,y in A;, which are respectively
mapped to +, T by assumption). Then, we iteratively update the (abstract) values of

variables by applying the system of equations.

Abstract States || Iterations — Final Values
Aq(x) + +
As(y) T T
AQ(X) 1|+ T
Ag(y) 1 + T
Ag(X) L + T
Ag(y) 1 + T
A4(X) 1 + T
A4(y) 1 + T
As(x) T T 0 0 0
As(y) L + + T T

ii. The analysis is not very precise: it cannot prove that y is positive when the program
fragment completes (i.e. at As).

iii. (a) If we compute the factorial using a program that does not utilise the subtraction

operator, then the result of the analysis becomes more precise:

ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Fall 2014

0
l Ag=[x>+ y-T,iT]
y:=1 A =Aply +]
) A =Afib +] U Aylie Ay() @ +]
. y A3 =A2
i=1 Ay=Asly- As() @ As(y)]
As=A,
2
A
i<=Xx
>
3
y
y =ity
4
y
1:=1+1

Abstract States || Final Values
Ao()

R I o e I | e e | o B | e o | It I |

(b) (*) Perhaps changing the program for the analysis to work more precisely is not
the best approach—Ilet’s try to improve the analysis! We’ll try a so-called relational
analysis with domain B({-,0,+} x {-,0,+}) to represent program states (x,y). A
relational analysis is more precise because the domain can express dependencies, or
relationships, between x and y.

We use the original version of the program fragment, but the new system of equations
below:

ETHZ D-INFK Software Verification — Problem Sheets
Prof. Dr. B. Meyer, Dr. C.A. Furia, Dr. S. Nanz Fall 2014

A= {(+,), (+,0), (+.4)}

A ={(x+H) I (xy) EA} U{(xy)I(x,y) EAsand x E X' © +}
As=AN{xyIx€{-+}andy€ {-,0,+}}
Ay={Xy)IX\y)€EAsandy €X' ® y'}

As=A, N {Oy)ly € {-0,+}}

and obtain a more precise analysis allowing us to deduce that y will be positive after
execution finishes:

Iterations Answer
Ar| (), (+0). (+4) . {(“L(f’f;}’o)’
SR G
As %) {(+.9)}) {E+:))} {(+,(J_r’)_,)(}—,+),
Ay %) (+.9)) {(+(+J)r)(})
As 0 {(0.4)

	Program Slicing
	Abstract Interpretation

