Problem Sheet 7: Program Slicing and Abstract Interpretation Sample Solutions

Chris Poskitt*
ETH Zürich

Starred exercises $(*)$ are more challenging than the others.

1 Program Slicing

i. Here is the program dependence graph for the program fragment (blue arrows are from the use-definition analysis; red arrows indicate control dependencies):

ii. For slicing criterion $\operatorname{print}(x)$, i.e. block 12, we get:

```
x := 0;
i := n;
while i > 0 do
    x := x + 1;
    i := i - 1;
end
print(x);
```

[^0]For slicing criterion print(y), i.e. block 13, we get:

```
y := 0;
i := n;
while i > 0 do
    i := i - 1;
    j := i;
    while j > 0 do
        y := y + 1;
        j := j - 1;
    end
end
print(y);
```


2 Abstract Interpretation

i. We begin by mapping every variable to \perp (except for x, y in A_{1}, which are respectively mapped to,$+ \top$ by assumption). Then, we iteratively update the (abstract) values of variables by applying the system of equations.

Abstract States	Iterations \longrightarrow													Final Values
$A_{1}(\mathrm{x})$	+													+
$A_{1}(\mathrm{y})$	T													\top
$A_{2}(\mathrm{x})$	\perp	+				T				T				\top
A_{2} (y)	\perp	+				+				T				\top
$A_{3}(\mathrm{x})$	\perp		+				T				T			T
$A_{3}(\mathrm{y})$	\perp		+				+				T			\top
$A_{4}(\mathrm{x})$	\perp			+				T				T		\top
$A_{4}(\mathrm{y})$	\perp			+				T				T		\top
$A_{5}(\mathrm{x})$	\perp				\perp				0				0	0
$A_{5}(\mathrm{y})$	\perp				+				+				T	\top

ii. The analysis is not very precise: it cannot prove that y is positive when the program fragment completes (i.e. at A_{5}).
iii. (a) If we compute the factorial using a program that does not utilise the subtraction operator, then the result of the analysis becomes more precise:

Abstract States	Final Values
$A_{0}(\mathrm{x})$	+
$A_{0}(\mathrm{y})$	T
$A_{0}(\mathrm{i})$	T
$A_{1}(\mathrm{x})$	+
$A_{1}(\mathrm{y})$	+
$A_{1}(\mathrm{i})$	+
$A_{2}(\mathrm{x})$	+
$A_{2}(\mathrm{y})$	+
$A_{2}(\mathrm{i})$	+
$A_{3}(\mathrm{x})$	+
$A_{3}(\mathrm{y})$	+
$A_{3}(\mathrm{i})$	+
$A_{4}(\mathrm{x})$	+
$A_{4}(\mathrm{y})$	+
$A_{4}(\mathrm{i})$	+
$A_{5}(\mathrm{x})$	+
$A_{5}(\mathrm{y})$	+
$A_{5}(\mathrm{i})$	+

(b) (*) Perhaps changing the program for the analysis to work more precisely is not the best approach - let's try to improve the analysis! We'll try a so-called relational analysis with domain $\mathfrak{P}(\{-, 0,+\} \times\{-, 0,+\})$ to represent program states (x, y). A relational analysis is more precise because the domain can express dependencies, or relationships, between x and y .
We use the original version of the program fragment, but the new system of equations below:

$$
\begin{aligned}
& \mathrm{A}_{1}=\{(+,-),(+, 0),(+,+)\} \\
& \mathrm{A}_{2}=\left\{(\mathrm{x},+) \mid(\mathrm{x}, \mathrm{y}) \in \mathrm{A}_{1}\right\} \cup\left\{\left(\mathrm{x}, \mathrm{y}^{\prime}\right) \mid\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \in \mathrm{A}_{4} \text { and } \mathrm{x} \in \mathrm{x}^{\prime} \Theta+\right\} \\
& \mathrm{A}_{3}=\mathrm{A}_{2} \cap\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x} \in\{-,+\} \text { and } \mathrm{y} \in\{-, 0,+\}\} \\
& \mathrm{A}_{4}=\left\{\left(\mathrm{x}^{\prime}, \mathrm{y}\right) \mid\left(\mathrm{x}^{\prime}, \mathrm{y}^{\prime}\right) \in \mathrm{A}_{3} \text { and } \mathrm{y} \in \mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime}\right\} \\
& \mathrm{A}_{5}=\mathrm{A}_{2} \cap\{(0, \mathrm{y}) \mid \mathrm{y} \in\{-, 0,+\}\}
\end{aligned}
$$

and obtain a more precise analysis allowing us to deduce that y will be positive after execution finishes:

	Iterations									Answer
A_{1}	$\{(+,-),(+, 0),(+,+)\}$						\ldots	$\{(+,-),(+, 0)$, $(+,+)\}$		
A_{2}	\emptyset	$\{(+,+)\}$			$\{(+,+),(0,+)$, $(-,+)\}$		\ldots	$\{(+,+),(-,+)$, $(0,+),(-,-)\}$		
A_{3}	\varnothing		$\{(+,+)\}$			$\{(+,+)$, $(-,+)\}$	\ldots	$\{(+,+),(-,+)$, $(-,-)\}$		
A_{4}	\emptyset			$\{(+,+)\}$			\ldots	$\{(+,+),(-,-)$, $(-,+)\}$		
A_{5}	\emptyset									

[^0]: *These solutions are adapted from previous iterations of the course when Stephan van Staden was the teaching assistant.

