1 Predicate Abstraction

i. Let us first visualise \(c \) and \(\neg c \) in a Venn diagram:

\[
\begin{array}{c}
\neg c \\
\end{array}
\]

\[
\begin{array}{c}
c \\
\end{array}
\]

\(\text{Pred}(\neg c) \) gives the weakest under-approximation of \(\neg c \). In other words, \(\text{Pred}(\neg c) \) implies \(\neg c \), but not (in general) the converse. A possible visualisation in a Venn diagram might then be:

\[
\begin{array}{c}
\text{Pred}(\neg c) \\
\end{array}
\]

\[
\begin{array}{c}
c \\
\end{array}
\]

In negating \(\text{Pred}(\neg c) \), we then get the strongest over-approximation, visualised as follows:

\[
\begin{array}{c}
\text{Pred}(\neg c) \\
\neg \text{Pred}(\neg c) \\
\end{array}
\]

*Some exercises adapted from ones written by Stephan van Staden and Carlo A. Furia.
ii. We build a Boolean abstraction from C_1, one line at a time. First, we over-approximate \textbf{assume} $x > 0$ \textbf{end} with \textbf{assume} $\neg \text{Pred}(\neg x > 0)$ \textbf{end}, followed by a parallel conditional assignment updating the predicates with respect to the original \textbf{assume} statement.

$$\neg \text{Pred}(\neg x > 0) = \neg(\neg p) = p$$

Hence we add \textbf{assume} p \textbf{end} to A_1. This should be followed by a parallel conditional assignment (as described in the slides):

```plaintext
if \text{Pred}(+\text{ex}(i)) then
    p(i) := True
elseif \text{Pred}(-\text{ex}(i)) then
    p(i) := False
else
    p := ?
end
```

Using the axiom $\vdash \{c \Rightarrow \text{post}\} \text{assume} c \text{ end} \{\text{post}\}$ for the weakest precondition of assume statements, we compute every $+/−\text{ex}(i)$ for predicates i:

$$
+\text{ex}(p) = (x > 0 \Rightarrow x > 0) \\
-\text{ex}(p) = (x > 0 \Rightarrow \neg x > 0) \\
+\text{ex}(q) = (x > 0 \Rightarrow y > 0) \\
-\text{ex}(q) = (x > 0 \Rightarrow \neg y > 0) \\
+\text{ex}(r) = (x > 0 \Rightarrow z > 0) \\
-\text{ex}(r) = (x > 0 \Rightarrow \neg z > 0)
$$

We apply the simplification step from the slides, and omit each $\text{Pred}(\text{ex}(i))$ that is not unconditionally valid. It so happens that only:

$$\text{Pred}(+\text{ex}(p)) = \text{Pred}(x > 0 \Rightarrow x > 0) = \text{Pred}(\text{true}) = \text{true}$$

is valid, hence the parallel conditional assignment reduces to simply:

```plaintext
if True then
    p := True
else
    p := ?
end
```

This reduces even further to $p := \text{True}$, which we add to A_1.

Next, we address the assignment \(z := (x \ast y) + 1 \). Recall that an assignment \(x := f \) is over-approximated by a parallel conditional assignment:

\[
\begin{align*}
\text{if } \text{Pred}(+f(i)) \text{ then } & \quad p(i) := \text{True} \\
\text{elseif } \text{Pred}(-f(i)) \text{ then } & \quad p(i) := \text{False} \\
\text{else } & \quad p := ? \\
\end{align*}
\]

Using the axiom \(\vdash \{\text{post}[f/x]\} \ x := f \ \{\text{post}\} \) and the definition of \(+/ - f(i) \) for predicates \(i \), we get:

\[
\begin{align*}
\text{Pred}(+f(p)) &= \text{Pred}(x > 0) \\
&= p \\
\text{Pred}(-f(p)) &= \text{Pred}(\neg x > 0) \\
&= \neg p \\
\text{Pred}(+f(q)) &= \text{Pred}(y > 0) \\
&= q \\
\text{Pred}(-f(q)) &= \text{Pred}(\neg y > 0) \\
&= \neg q \\
\text{Pred}(+f(r)) &= \text{Pred}((x \ast y) + 1 > 0) \\
&= (p \land q) \lor (\neg p \land \neg q) \\
\text{Pred}(-f(r)) &= \text{Pred}(\neg(x \ast y) + 1 > 0) \\
&= \text{Pred}((x \ast y) + 1 \leq 0) \\
&= \text{false}
\end{align*}
\]

The parallel conditional assignments for \(p, q \) have no effect, hence we add only the following to \(A_1 \):

\[
\begin{align*}
\text{if } (p \land q) \text{ or } (\neg p \land \neg q) \text{ then } & \quad r := \text{True} \\
\text{elseif } \text{False} \text{ then } & \quad r := \text{False} \\
\text{else } & \quad r := ? \\
\end{align*}
\]

Finally, we address the assertion \textbf{assert } \(z >= 1 \text{ end} \). The Boolean abstraction is simply \textbf{assert } \text{Pred}(z \geq 1) \text{ end}. We have:

\[
\text{Pred}(z \geq 1) = r
\]

and hence add \textbf{assert } r \text{ end} to \(A_1 \).
Altogether, A_1 is the following program:

```
assume p end
p := True

if (p and q) or (not p and not q) then
  r := True
elsif False then
  r := False
else
  r := ?
end

assert r end
```

With a further simplification, we get:

```
assume p end
p := True

if (p and q) or (not p and not q) then
  r := True
else
  r := ?
end

assert r end
```
iii. (a) After normalising the program (following the details in the slides) we get:

\[
\begin{align*}
&\text{if } ? \text{ then} \\
&\quad \text{assume } x > 0 \text{ end} \\
&\quad y := x + x \\
&\text{else} \\
&\quad \text{assume } x \leq 0 \text{ end} \\
&\quad \text{if } ? \text{ then} \\
&\quad\quad \text{assume } x = 0 \text{ end} \\
&\quad\quad y := 1 \\
&\quad\text{else} \\
&\quad\quad \text{assume } x \neq 0 \text{ end} \\
&\quad\quad y := x \times x \\
&\text{end} \\
&\text{end} \\
&\text{assert } y > 0 \text{ end}
\end{align*}
\]

(b) To build \(A_2 \) from the normalised code above, apply the transformations to each assignment, assume, and assert, analogously to how I did when constructing \(A_1 \) (except that this time you only have two predicates, \(p \) and \(q \)). The resulting abstraction (after some simplifications) should be equivalent to this:

\[
\begin{align*}
&\text{if } ? \text{ then} \\
&\quad \text{assume } p \text{ end} \\
&\quad p := \text{True} \\
&\quad q := \text{True} \\
&\text{else} \\
&\quad \text{assume not } p \text{ end} \\
&\quad p := \text{False} \\
&\quad \text{if } ? \text{ then} \\
&\quad\quad \text{assume not } p \text{ end} \\
&\quad\quad p := \text{False} \\
&\quad\quad q := \text{True} \\
&\quad\text{else} \\
&\quad\quad \text{assume True end -- can delete this assume} \\
&\quad\quad q := ? \\
&\text{end} \\
&\text{end} \\
&\text{assert } q \text{ end}
\end{align*}
\]
2 Error Traces

i. An abstract error trace is:

\[
[p, \neg q, r] \\
\text{assume } p \text{ end} \\
[p, \neg q, r] \\
p := \text{True} \\
[p, \neg q, r] \\
r := ? \\
[p, \neg q, \neg r] \\
\text{assert } r \text{ end}
\]

Observe that each concrete instruction corresponds to a (compound) abstract instruction. We can check whether or not this is a feasible concrete run by computing the weakest precondition of the concrete instructions with respect to \(p \land \neg q \land \neg r\), interpreting conditions (assume, conditionals, or exit conditions) as asserts:

\[
\{x > 0 \text{ and } y \leq 0 \text{ and } (x*y)+1 \leq 0\}
\]

\[
\{(x > 0 \text{ and } y \leq 0 \text{ and } (x*y)+1 \leq 0) \text{ and } x > 0\}
\]

\[
\text{assert } x > 0 \text{ end}
\]

\[
\{x > 0 \text{ and } y \leq 0 \text{ and } z \leq 0\}
\]

\[
[p, \neg q, \neg r]
\]

Executing the concrete program on a state \(s\) such that

\(s \models x > 0 \land y \leq 0 \land (x*y)+1 \leq 0\)

will reveal the fault. One possible input state (of many) is \(s = \{x \mapsto 3, y \mapsto -2, z \mapsto _\}\).

ii. Here is an abstract counterexample trace:

\[
[\neg p, \neg q] \\
\text{assume } \neg p \text{ end} \\
[\neg p, \neg q] \\
p := \text{False} \\
[\neg p, \neg q] \\
\text{assume } \text{True} \text{ end} \\
[\neg p, \neg q] \\
q := ? \\
[\neg p, \neg q] \\
\text{assert } q \text{ end}
\]

As before, we check whether or not this abstract execution reflects a feasible, concrete counterexample, by computing the weakest precondition of the corresponding concrete instructions with respect to \(\neg p \land \neg q\). Again, we interpret conditions (assume in this case) as asserts, and apply the corresponding Hoare logic axioms:
{\(x < 0 \) and \(x \times x \leq 0 \)}
{\(x \leq 0 \) and \(x \neq 0 \) and \(x \leq 0 \) and \(x \times x \leq 0 \)}
\quad assert \(x \leq 0 \)
{\(x \neq 0 \) and \(x \leq 0 \) and \(x \times x \leq 0 \)}
\quad assert \(x \neq 0 \) end
{\(x \leq 0 \) and \(x \times x \leq 0 \)}
\quad y := x \times x
{\(x \leq 0 \) and \(y \leq 0 \)}
\quad \text{[\text{not } p, \text{not } q]}$

Observe that in this case, the weakest precondition we have constructed is equivalent to false. There is no assignment to \(x \) that will satisfy the assertion. Hence the abstract counterexample is infeasible (spurious) in the concrete program; abstraction refinement is needed.